Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra
HTML articles powered by AMS MathViewer
- by Buyang Li;
- Math. Comp. 88 (2019), 1-44
- DOI: https://doi.org/10.1090/mcom/3316
- Published electronically: March 19, 2018
- HTML | PDF | Request permission
Previous version: Original version posted March 19, 2018
Corrected version: Current version corrects publisher's error which introduced typos into equations at the bottom of page 17 and top of page 18.
Abstract:
In general polygons and polyhedra, possibly nonconvex, the analyticity of the finite element heat semigroup in the $L^q$-norm, $1\leq q\leq \infty$, and the maximal $L^p$-regularity of semi-discrete finite element solutions of parabolic equations are proved. By using these results, the problem of maximum-norm stability of the finite element parabolic projection is reduced to the maximum-norm stability of the Ritz projection, which currently is known to hold for general polygonal domains and convex polyhedral domains.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- G. Akrivis and B. Li, Maximum norm analysis of implicit–explicit backward difference formulas for nonlinear parabolic equations, IMA J. Numer. Anal., 2017, DOI: 10.1093/imanum/drx008.
- Georgios Akrivis, Buyang Li, and Christian Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp. 86 (2017), no. 306, 1527–1552. MR 3626527, DOI 10.1090/mcom/3228
- Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385, DOI 10.1007/978-3-0348-9221-6
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Philippe Clément and Jan Prüss, Global existence for a semilinear parabolic Volterra equation, Math. Z. 209 (1992), no. 1, 17–26. MR 1143209, DOI 10.1007/BF02570816
- Michel Crouzeix, Contractivity and analyticity in $l^p$ of some approximation of the heat equation, Numer. Algorithms 33 (2003), no. 1-4, 193–201. International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001). MR 2005562, DOI 10.1023/A:1025512021335
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Alan Demlow, Omar Lakkis, and Charalambos Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 2157–2176. MR 2519598, DOI 10.1137/070708792
- A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the $W^{1}_{\infty }$ norm for finite element methods on graded meshes, Math. Comp. 81 (2012), no. 278, 743–764. MR 2869035, DOI 10.1090/S0025-5718-2011-02546-9
- Daniele A. Di Pietro and Jérôme Droniou, $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray-Lions problems, Math. Models Methods Appl. Sci. 27 (2017), no. 5, 879–908. MR 3636615, DOI 10.1142/S0218202517500191
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193–197. MR 383789, DOI 10.1007/BF01400302
- Matthias Geissert, Discrete maximal $L_p$ regularity for finite element operators, SIAM J. Numer. Anal. 44 (2006), no. 2, 677–698. MR 2218965, DOI 10.1137/040616553
- Matthias Geissert, Applications of discrete maximal $L_p$ regularity for finite element operators, Numer. Math. 108 (2007), no. 1, 121–149. MR 2350187, DOI 10.1007/s00211-007-0110-1
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 (2009), no. 2, 221–243. MR 2495783, DOI 10.1007/s00211-009-0213-y
- Anita Hansbo, Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems, BIT 42 (2002), no. 2, 351–379. MR 1912592, DOI 10.1023/A:1021903109720
- N. J. Kalton and G. Lancien, A solution to the problem of $L^p$-maximal regularity, Math. Z. 235 (2000), no. 3, 559–568. MR 1800212, DOI 10.1007/PL00004816
- T. Kemmochi and N. Saito. Discrete maximal regularity and the finite element method for parabolic equations. http://arXiv.org/abs/1602.06864.
- Balázs Kovács, Buyang Li, and Christian Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal. 54 (2016), no. 6, 3600–3624. MR 3582825, DOI 10.1137/15M1040918
- Steven G. Krantz, A panorama of harmonic analysis, Carus Mathematical Monographs, vol. 27, Mathematical Association of America, Washington, DC, 1999. MR 1710388
- P. C. Kunstmann, B. Li, and C. Lubich, Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity, Found. Comput. Math. (2017). DOI 10.1007/s10208-017-9364-x.
- Peer C. Kunstmann and Lutz Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959, DOI 10.1007/978-3-540-44653-8_{2}
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1968 (Russian). Translated from the Russian by S. Smith. MR 241822
- Dmitriy Leykekhman, Pointwise localized error estimates for parabolic finite element equations, Numer. Math. 96 (2004), no. 3, 583–600. MR 2028727, DOI 10.1007/s00211-003-0480-y
- Dmitriy Leykekhman and Boris Vexler, Finite element pointwise results on convex polyhedral domains, SIAM J. Numer. Anal. 54 (2016), no. 2, 561–587. MR 3470741, DOI 10.1137/15M1013912
- Dmitriy Leykekhman and Boris Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems, SIAM J. Numer. Anal. 54 (2016), no. 3, 1365–1384. MR 3498514, DOI 10.1137/15M103412X
- Dmitriy Leykekhman and Boris Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math. 135 (2017), no. 3, 923–952. MR 3606467, DOI 10.1007/s00211-016-0821-2
- Buyang Li, Maximum-norm stability and maximal $L^p$ regularity of FEMs for parabolic equations with Lipschitz continuous coefficients, Numer. Math. 131 (2015), no. 3, 489–516. MR 3395142, DOI 10.1007/s00211-015-0698-5
- Buyang Li and Weiwei Sun, Regularity of the diffusion-dispersion tensor and error analysis of Galerkin FEMs for a porous medium flow, SIAM J. Numer. Anal. 53 (2015), no. 3, 1418–1437. MR 3355773, DOI 10.1137/140958803
- Buyang Li and Weiwei Sun, Maximal $L^p$ analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp. 86 (2017), no. 305, 1071–1102. MR 3614012, DOI 10.1090/mcom/3133
- Buyang Li and Weiwei Sun, Maximal regularity of fully discrete finite element solutions of parabolic equations, SIAM J. Numer. Anal. 55 (2017), no. 2, 521–542. MR 3620143, DOI 10.1137/16M1071912
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996. Incompressible models; Oxford Science Publications. MR 1422251
- J. A. Nitsche and Mary F. Wheeler, $L_{\infty }$-boundedness of the finite element Galerkin operator for parabolic problems, Numer. Funct. Anal. Optim. 4 (1981/82), no. 4, 325–353. MR 673316, DOI 10.1080/01630568208816121
- J. T. Oden and J. N. Reddy, An introduction to the mathematical theory of finite elements, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 461950
- El-Maati Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1465–1474. MR 1232142, DOI 10.1090/S0002-9939-1995-1232142-3
- C. Palencia, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal. 33 (1996), no. 4, 1654–1668. MR 1403564, DOI 10.1137/S0036142993259779
- Rolf Rannacher, $L^\infty$-stability estimates and asymptotic error expansion for parabolic finite element equations, Extrapolation and defect correction (1990), Bonner Math. Schriften, vol. 228, Univ. Bonn, Bonn, 1991, pp. 74–94. MR 1185533
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- Alfred H. Schatz, A weak discrete maximum principle and stability of the finite element method in $L_{\infty }$ on plane polygonal domains. I, Math. Comp. 34 (1980), no. 149, 77–91. MR 551291, DOI 10.1090/S0025-5718-1980-0551291-3
- A. H. Schatz, V. C. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), no. 3, 265–304. MR 562737, DOI 10.1002/cpa.3160330305
- A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1349–1385. MR 1639143, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1349::AID-CPA5>3.3.CO;2-T
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373–389. MR 1804662, DOI 10.1007/s002110000184
- Lars B. Wahlbin, Local behavior in finite element methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 353–522. MR 1115238
- Lutz Weis, A new approach to maximal $L_p$-regularity, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 195–214. MR 1818002
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften, vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Bibliographic Information
- Buyang Li
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- MR Author ID: 910552
- Email: buyang.li@polyu.edu.hk
- Received by editor(s): December 11, 2017
- Received by editor(s) in revised form: May 11, 2017, and July 25, 2017
- Published electronically: March 19, 2018
- Additional Notes: This work was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region (Project No. 15300817) and by a grant from the Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the German Academic Exchange Service of Germany (Ref. No. G-PolyU502/16).
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 1-44
- MSC (2010): Primary 35K20, 65M12, 65M60
- DOI: https://doi.org/10.1090/mcom/3316
- MathSciNet review: 3854049