On twists of smooth plane curves
HTML articles powered by AMS MathViewer
- by Eslam Badr, Francesc Bars and Elisa Lorenzo García;
- Math. Comp. 88 (2019), 421-438
- DOI: https://doi.org/10.1090/mcom/3317
- Published electronically: March 15, 2018
- HTML | PDF | Request permission
Abstract:
Given a smooth curve defined over a field $k$ that admits a non-singular plane model over $\overline {k}$, a fixed separable closure of $k$, it does not necessarily have a non-singular plane model defined over the field $k$. We determine under which conditions this happens and we show an example of such phenomenon: a curve defined over $k$ admitting plane models but none defined over $k$. Now, even assuming that such a smooth plane model exists, we wonder about the existence of non-singular plane models over $k$ for its twists. We characterize twists possessing such models and we also show an example of a twist not admitting any non-singular plane model over $k$. As a consequence, we get explicit equations for a non-trivial Brauer-Severi surface. Finally, we obtain a theoretical result to describe all the twists of smooth plane curves with cyclic automorphism group having a model defined over $k$ whose automorphism group is generated by a diagonal matrix.References
- E.Badr, On the stratification of smooth plane curves by automorphism groups. PhD thesis, September 2017, Universitat Autònoma de Barcelona.
- Eslam Badr and Francesc Bars, On the locus of smooth plane curves with a fixed automorphism group, Mediterr. J. Math. 13 (2016), no. 5, 3605–3627. MR 3554328, DOI 10.1007/s00009-016-0705-9
- Eslam Badr and Francesc Bars, Automorphism groups of nonsingular plane curves of degree 5, Comm. Algebra 44 (2016), no. 10, 4327–4340. MR 3508302, DOI 10.1080/00927872.2015.1087547
- Eslam Badr and Francesc Bars, Non-singular plane curves with an element of “large” order in its automorphism group, Internat. J. Algebra Comput. 26 (2016), no. 2, 399–433. MR 3475065, DOI 10.1142/S0218196716500168
- E.Badr and E. Lorenzo, Parametrizing the moduli space of smooth plane curves of genus 6. arXiv:1701.06065, 2017.
- H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185–189. MR 529972
- François Châtelet, Variations sur un thème de H. Poincaré, Ann. Sci. École Norm. Sup. (3) 61 (1944), 249–300 (French). MR 14720
- The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.5.7, 2012. (http://www.gap-system.org)
- Willem A. de Graaf, Michael Harrison, Jana Pílniková, and Josef Schicho, A Lie algebra method for rational parametrization of Severi-Brauer surfaces, J. Algebra 303 (2006), no. 2, 514–529. MR 2255120, DOI 10.1016/j.jalgebra.2005.06.022
- J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008. MR 2386879
- Bonnie Sakura Huggins, Fields of moduli and fields of definition of curves, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–University of California, Berkeley. MR 2708514
- J. Jahnel, The Brauer-Severi Variety Associated with a Central Simple Algebra: A Survey. See https://www.math.uni-bielefeld.de/lag/man/052.pdf
- Reynald Lercier and Christophe Ritzenthaler, Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects, J. Algebra 372 (2012), 595–636. MR 2990029, DOI 10.1016/j.jalgebra.2012.07.054
- Reynald Lercier, Christophe Ritzenthaler, Florent Rovetta, and Jeroen Sijsling, Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields, LMS J. Comput. Math. 17 (2014), no. suppl. A, 128–147. MR 3240800, DOI 10.1112/S146115701400031X
- E. Lorenzo, Arithmetic properties of non-hyperelliptic genus 3 curves. PhD dissertation, Universitat Politècnica de Catalunya (2015), Barcelona.
- Elisa Lorenzo García, Twists of non-hyperelliptic curves, Rev. Mat. Iberoam. 33 (2017), no. 1, 169–182. MR 3615446, DOI 10.4171/RMI/931
- Stephen Meagher and Jaap Top, Twists of genus three curves over finite fields, Finite Fields Appl. 16 (2010), no. 5, 347–368. MR 2678623, DOI 10.1016/j.ffa.2010.06.001
- R. Pannekoek, On the parametrization over $\mathbb {Q}$ of cubic surfaces. Master dissertation, May 2009, University of Groningen.
- J. Roé, X. Xarles, Galois descent for the gonality of curves, Arxiv:1405.5991v3, 2015. To appear in Math. Res. Lett.
- E. Tengan, Central Simple Algebras and the Brauer group, XVII Latin American Algebra Colloquium, (2009). See the book in http://www.icmc.usp.br/ etengan/algebra/arquivos/cft.pdf
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. 22 (1921), no. 2, 129–135. MR 1501164, DOI 10.1090/S0002-9947-1921-1501164-3
- André Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524. MR 82726, DOI 10.2307/2372670
Bibliographic Information
- Eslam Badr
- Affiliation: Department of Mathematics, Faculty of Science, Cairo University, 12613 Giza, Egypt
- MR Author ID: 1078860
- Email: eslam@sci.cu.edu.eg
- Francesc Bars
- Affiliation: Departament Matemàtiques, Edif. C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
- MR Author ID: 647724
- ORCID: 0000-0003-4779-3995
- Email: francesc@mat.uab.cat
- Elisa Lorenzo García
- Affiliation: Laboratoire IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, Cedex, France
- ORCID: 0000-0001-7360-1411
- Email: elisa.lorenzogarcia@univ-rennes1.fr
- Received by editor(s): February 22, 2017
- Received by editor(s) in revised form: July 2, 2017, and July 28, 2017
- Published electronically: March 15, 2018
- Additional Notes: The first author (during his PhD study at UAB) and second author were supported by MTM2016-75980-P
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 421-438
- MSC (2010): Primary 11G30, 11D41, 14H37, 14H50, 14H45, 12F12
- DOI: https://doi.org/10.1090/mcom/3317
- MathSciNet review: 3854064