A nonconforming Crouzeix-Raviart type finite element on polygonal meshes
HTML articles powered by AMS MathViewer
- by Yanqiu Wang;
- Math. Comp. 88 (2019), 237-271
- DOI: https://doi.org/10.1090/mcom/3334
- Published electronically: April 10, 2018
- HTML | PDF | Request permission
Abstract:
A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.References
- R. Altmann and C. Carstensen, $P_1$-nonconforming finite elements on triangulations into triangles and quadrilaterals, SIAM J. Numer. Anal. 50 (2012), no. 2, 418–438. MR 2914269, DOI 10.1137/110823675
- Blanca Ayuso de Dios, Konstantin Lipnikov, and Gianmarco Manzini, The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 879–904. MR 3507277, DOI 10.1051/m2an/2015090
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199–214. MR 2997471, DOI 10.1142/S0218202512500492
- Susanne C. Brenner, Forty years of the Crouzeix-Raviart element, Numer. Methods Partial Differential Equations 31 (2015), no. 2, 367–396. MR 3312124, DOI 10.1002/num.21892
- Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005), no. 5, 1872–1896. MR 2192322, DOI 10.1137/040613950
- Erik Brisson, Representing geometric structures in $d$ dimensions: topology and order, Discrete Comput. Geom. 9 (1993), no. 4, 387–426. MR 1206799, DOI 10.1007/BF02189330
- Z. Cai, J. Douglas Jr., J. E. Santos, D. Sheen, and X. Ye, Nonconforming quadrilateral finite elements: a correction, Calcolo 37 (2000), no. 4, 253–254. MR 1812789, DOI 10.1007/s100920070004
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf, Computational geometry, Second, revised edition, Springer-Verlag, Berlin, 2000. Algorithms and applications. MR 1763734, DOI 10.1007/978-3-662-04245-8
- Daniele A. Di Pietro and Alexandre Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79 (2010), no. 271, 1303–1330. MR 2629994, DOI 10.1090/S0025-5718-10-02333-1
- Daniele A. Di Pietro, Alexandre Ern, and Simon Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math. 14 (2014), no. 4, 461–472. MR 3259024, DOI 10.1515/cmam-2014-0018
- Daniele A. Di Pietro and Simon Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math. Comp. 84 (2015), no. 291, 1–31. MR 3266951, DOI 10.1090/S0025-5718-2014-02861-5
- Jim Douglas Jr., Juan E. Santos, Dongwoo Sheen, and Xiu Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 747–770. MR 1726483, DOI 10.1051/m2an:1999161
- Michael S. Floater, Mean value coordinates, Comput. Aided Geom. Design 20 (2003), no. 1, 19–27. MR 1968304, DOI 10.1016/S0167-8396(03)00002-5
- M. Floater, K. Hormann and G. Kós, A general construction of barycentric coordinates over convex polygons, Adv. Comp. Math. 24 (2006), 311–331.
- Michael Floater, Andrew Gillette, and N. Sukumar, Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal. 52 (2014), no. 1, 515–532. MR 3166966, DOI 10.1137/130925712
- Michael S. Floater, Generalized barycentric coordinates and applications, Acta Numer. 24 (2015), 161–214. MR 3349308, DOI 10.1017/S0962492914000129
- Andrew Gillette, Alexander Rand, and Chandrajit Bajaj, Error estimates for generalized barycentric interpolation, Adv. Comput. Math. 37 (2012), no. 3, 417–439. MR 2970859, DOI 10.1007/s10444-011-9218-z
- P. Gross and P. Kotiuga, Data structures for geometric and topological aspects of finite element algorithms, Progress in Electromagnetics Research 32 (2001), 151–169.
- Hou De Han, Nonconforming elements in the mixed finite element method, J. Comput. Math. 2 (1984), no. 3, 223–233. MR 815417
- Jun Hu and Zhong-ci Shi, Constrained quadrilateral nonconforming rotated ${\scr Q}_1$ element, J. Comput. Math. 23 (2005), no. 6, 561–586. MR 2190317
- Jun Hu and ShangYou Zhang, Nonconforming finite element methods on quadrilateral meshes, Sci. China Math. 56 (2013), no. 12, 2599–2614. MR 3160068, DOI 10.1007/s11425-013-4741-7
- L. Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Comput. Geom. Theo. Appl. 13 (1999), 65–90.
- Imbunm Kim, Zhongxuan Luo, Zhaoliang Meng, Hyun Nam, Chunjae Park, and Dongwoo Sheen, A piecewise $P_2$-nonconforming quadrilateral finite element, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 3, 689–715. MR 3056405, DOI 10.1051/m2an/2012044
- L. Christine Kinsey, Topology of surfaces, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1993. MR 1240053, DOI 10.1007/978-1-4612-0899-0
- M. Köster, A. Ouazzi, F. Schieweck, S. Turek, and P. Zajac, New robust nonconforming finite elements of higher order, Appl. Numer. Math. 62 (2012), no. 3, 166–184. MR 2878019, DOI 10.1016/j.apnum.2011.11.005
- Heejeong Lee and Dongwoo Sheen, A new quadratic nonconforming finite element on rectangles, Numer. Methods Partial Differential Equations 22 (2006), no. 4, 954–970. MR 2230281, DOI 10.1002/num.20131
- Youai Li, A new family of nonconforming finite elements on quadrilaterals, Comput. Math. Appl. 70 (2015), no. 4, 637–647. MR 3372048, DOI 10.1016/j.camwa.2015.05.011
- Qun Lin, Lutz Tobiska, and Aihui Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation, IMA J. Numer. Anal. 25 (2005), no. 1, 160–181. MR 2110239, DOI 10.1093/imanum/drh008
- Martti Mäntylä, An introduction to solid modeling, Principles of Computer Science Series, vol. 13, Computer Science Press, Rockville, MD, 1988. MR 918772
- M. Meyer, H. Lee, A. Barr and M. Desbrun, Generalized barycentric coordinates for irregular polygons, J. Graphics Tools 7 (2002), 13–22.
- Lin Mu, Xiaoshen Wang, and Yanqiu Wang, Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization, Numer. Methods Partial Differential Equations 31 (2015), no. 1, 308–326. MR 3285814, DOI 10.1002/num.21905
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- Chunjae Park and Dongwoo Sheen, $P_1$-nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 2, 624–640. MR 2004191, DOI 10.1137/S0036142902404923
- R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations 8 (1992), no. 2, 97–111. MR 1148797, DOI 10.1002/num.1690080202
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210112
- N. Sukumar and A. Tabarraei, Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg. 61 (2004), no. 12, 2045–2066. MR 2101599, DOI 10.1002/nme.1141
- N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Engrg. 13 (2006), no. 1, 129–163. MR 2283620, DOI 10.1007/BF02905933
- Eugene L. Wachspress, A rational finite element basis, Mathematics in Science and Engineering, Vol. 114, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 426460
- Eugene L. Wachspress, Barycentric coordinates for polytopes, Comput. Math. Appl. 61 (2011), no. 11, 3319–3321. MR 2801997, DOI 10.1016/j.camwa.2011.04.032
- Junping Wang and Xiu Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp. 83 (2014), no. 289, 2101–2126. MR 3223326, DOI 10.1090/S0025-5718-2014-02852-4
- Joe Warren, Barycentric coordinates for convex polytopes, Adv. Comput. Math. 6 (1996), no. 2, 97–108 (1997). MR 1431788, DOI 10.1007/BF02127699
Bibliographic Information
- Yanqiu Wang
- Affiliation: School of Mathematical Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
- MR Author ID: 670715
- Email: yqwang@njnu.edu.cn
- Received by editor(s): April 19, 2017
- Received by editor(s) in revised form: September 15, 2017, and November 1, 2017
- Published electronically: April 10, 2018
- Additional Notes: The author was supported by the Natural Science Foundation of China under grant numbers 11671210 and 91630201.
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 237-271
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/mcom/3334
- MathSciNet review: 3854057