Smoothed projections and mixed boundary conditions
HTML articles powered by AMS MathViewer
- by Martin W. Licht;
- Math. Comp. 88 (2019), 607-635
- DOI: https://doi.org/10.1090/mcom/3330
- Published electronically: April 10, 2018
- HTML | PDF | Request permission
Abstract:
Mixed boundary conditions are introduced to finite element exterior calculus. We construct smoothed projections from Sobolev de Rham complexes onto finite element de Rham complexes which commute with the exterior derivative, preserve homogeneous boundary conditions along a fixed boundary part, and satisfy uniform bounds for shape-regular families of triangulations and bounded polynomial degree. The existence of such projections implies stability and quasi-optimal convergence of mixed finite element methods for the Hodge Laplace equation with mixed boundary conditions. In addition, we prove the density of smooth differential forms in Sobolev spaces of differential forms over weakly Lipschitz domains with partial boundary conditions.References
- Ana Alonso Rodríguez and Mirco Raffetto, Unique solvability for electromagnetic boundary value problems in the presence of partly lossy inhomogeneous anisotropic media and mixed boundary conditions, Math. Models Methods Appl. Sci. 13 (2003), no. 4, 597–611. MR 1976304, DOI 10.1142/S0218202503002672
- Douglas N. Arnold and Gerard Awanou, Finite element differential forms on cubical meshes, Math. Comp. 83 (2014), no. 288, 1551–1570. MR 3194121, DOI 10.1090/S0025-5718-2013-02783-4
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1–155. MR 2269741, DOI 10.1017/S0962492906210018
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 21-26, 1660–1672. MR 2517938, DOI 10.1016/j.cma.2008.12.017
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354. MR 2594630, DOI 10.1090/S0273-0979-10-01278-4
- Andreas Axelsson and Alan McIntosh, Hodge decompositions on weakly Lipschitz domains, Advances in analysis and geometry, Trends Math., Birkhäuser, Basel, 2004, pp. 3–29. MR 2077077
- Sebastian Bauer, Dirk Pauly, and Michael Schomburg, The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions, SIAM J. Math. Anal. 48 (2016), no. 4, 2912–2943. MR 3542004, DOI 10.1137/16M1065951
- Francesca Bonizzoni, Annalisa Buffa, and Fabio Nobile, Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term, IMA J. Numer. Anal. 34 (2014), no. 4, 1328–1360. MR 3269428, DOI 10.1093/imanum/drt041
- Alain Bossavit, Computational electromagnetism, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. MR 1488417
- Dietrich Braess, Finite elements, 3rd ed., Cambridge University Press, Cambridge, 2007. Theory, fast solvers, and applications in elasticity theory; Translated from the German by Larry L. Schumaker. MR 2322235, DOI 10.1017/CBO9780511618635
- J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal. 108 (1992), no. 1, 88–132. MR 1174159, DOI 10.1016/0022-1236(92)90147-B
- A. Buffa, M. Costabel, and D. Sheen, On traces for $\textbf {H}(\textbf {curl},\Omega )$ in Lipschitz domains, J. Math. Anal. Appl. 276 (2002), no. 2, 845–867. MR 1944792, DOI 10.1016/S0022-247X(02)00455-9
- Annalisa Buffa, Trace theorems on non-smooth boundaries for functional spaces related to Maxwell equations: an overview, Computational electromagnetics (Kiel, 2001) Lect. Notes Comput. Sci. Eng., vol. 28, Springer, Berlin, 2003, pp. 23–34. MR 1986130, DOI 10.1007/978-3-642-55745-3_{3}
- Snorre H. Christiansen, Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math. 107 (2007), no. 1, 87–106. MR 2317829, DOI 10.1007/s00211-007-0081-2
- Snorre H. Christiansen, Hans Z. Munthe-Kaas, and Brynjulf Owren, Topics in structure-preserving discretization, Acta Numer. 20 (2011), 1–119. MR 2805152, DOI 10.1017/S096249291100002X
- Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813–829. MR 2373181, DOI 10.1090/S0025-5718-07-02081-9
- Martin Costabel and Alan McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z. 265 (2010), no. 2, 297–320. MR 2609313, DOI 10.1007/s00209-009-0517-8
- Martin Costabel, A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl. 157 (1991), no. 2, 527–541. MR 1112332, DOI 10.1016/0022-247X(91)90104-8
- Leszek Demkowicz, Computing with $hp$-adaptive finite elements. Vol. 1, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. One and two dimensional elliptic and Maxwell problems; With 1 CD-ROM (UNIX). MR 2267112, DOI 10.1201/9781420011692
- Alan Demlow and Anil N. Hirani, A posteriori error estimates for finite element exterior calculus: the de Rham complex, Found. Comput. Math. 14 (2014), no. 6, 1337–1371. MR 3273681, DOI 10.1007/s10208-014-9203-2
- P. Doktor, On the density of smooth functions in certain subspaces of Sobolev space, Comment. Math. Univ. Carolinae 14 (1973), 609–622. MR 336317
- Pavel Doktor and Alexander Ženíšek, The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions, Appl. Math. 51 (2006), no. 5, 517–547. MR 2261637, DOI 10.1007/s10492-006-0019-5
- Alexandre Ern and Jean-Luc Guermond, Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes, Comput. Methods Appl. Math. 16 (2016), no. 1, 51–75. MR 3441095, DOI 10.1515/cmam-2015-0034
- Richard S. Falk and Ragnar Winther, Local bounded cochain projections, Math. Comp. 83 (2014), no. 290, 2631–2656. MR 3246803, DOI 10.1090/S0025-5718-2014-02827-5
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- Paolo Fernandes and Gianni Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci. 7 (1997), no. 7, 957–991. MR 1479578, DOI 10.1142/S0218202597000487
- V. Gol’dshtein, I. Mitrea, and M. Mitrea, Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds, J. Math. Sci. (N.Y.) 172 (2011), no. 3, 347–400. Problems in mathematical analysis. No. 52. MR 2839867, DOI 10.1007/s10958-010-0200-y
- V. M. Gol’dshtein, V. I. Kuz’minov, and I, A. Shvedov, Differential forms on Lipschitz manifolds, Siberian Mathematical Journal 23 (1982), no. 2, 151–161.
- J. Gopalakrishnan and M. Oh, Commuting smoothed projectors in weighted norms with an application to axisymmetric Maxwell equations, J. Sci. Comput. 51 (2012), no. 2, 394–420. MR 2902212, DOI 10.1007/s10915-011-9513-3
- J. Gopalakrishnan and W. Qiu, Partial expansion of a Lipschitz domain and some applications, Front. Math. China (2011), 1–24.
- R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237–339. MR 2009375, DOI 10.1017/S0962492902000041
- Tünde Jakab, Irina Mitrea, and Marius Mitrea, On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains, Indiana Univ. Math. J. 58 (2009), no. 5, 2043–2071. MR 2583491, DOI 10.1512/iumj.2009.58.3678
- F. Jochmann, A compactness result for vector fields with divergence and curl in $L^q(\Omega )$ involving mixed boundary conditions, Appl. Anal. 66 (1997), no. 1-2, 189–203. MR 1612136, DOI 10.1080/00036819708840581
- Frank Jochmann, Regularity of weak solutions of Maxwell’s equations with mixed boundary-conditions, Math. Methods Appl. Sci. 22 (1999), no. 14, 1255–1274. MR 1710708, DOI 10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N
- Rainer Kreß, Ein kombiniertes Dirichlet-Neumannsches Randwertproblem bei harmonischen Vektorfeldern, Arch. Rational Mech. Anal. 42 (1971), 40–49 (German). MR 350033, DOI 10.1007/BF00282316
- P. Kuhn, Die Maxwellgleichung mit wechselnden Randbedingungen, Shaker, 1999.
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- M. W. Licht, Smoothed projections over weakly Lipschitz domains, Math. of Comp. (2018). To appear in Math. Comp.
- M. W. Licht, Discrete distributional differential forms and their homology theory, Found. Comput. Math. (2016).
- J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85–122. MR 515647, DOI 10.5186/aasfm.1977.0315
- Dorina Mitrea and Marius Mitrea, Finite energy solutions of Maxwell’s equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds, J. Funct. Anal. 190 (2002), no. 2, 339–417. MR 1899489, DOI 10.1006/jfan.2001.3870
- Dorina Mitrea, Marius Mitrea, and Mei-Chi Shaw, Traces of differential forms on Lipschitz domains, the boundary de Rham complex, and Hodge decompositions, Indiana Univ. Math. J. 57 (2008), no. 5, 2061–2095. MR 2463962, DOI 10.1512/iumj.2008.57.3338
- Marius Mitrea, Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains, Forum Math. 13 (2001), no. 4, 531–567. MR 1830246, DOI 10.1515/form.2001.021
- Marius Mitrea, Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds, Duke Math. J. 125 (2004), no. 3, 467–547. MR 2166752, DOI 10.1215/S0012-7094-04-12322-1
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Science & Business Media, 2011.
- R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984), no. 2, 151–164. MR 753428, DOI 10.1007/BF01161700
- J. Schöberl, A Multilevel Decomposition Result in ${H(\rm curl)}$, Proceedings of the 8th European Multigrid Conference, EMG, 2005.
- Joachim Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), no. 262, 633–649. MR 2373173, DOI 10.1090/S0025-5718-07-02030-3
- Chad Scott, $L^p$ theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2075–2096. MR 1297538, DOI 10.1090/S0002-9947-1995-1297538-7
- Ch. Weber, A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci. 2 (1980), no. 1, 12–25. MR 561375, DOI 10.1002/mma.1670020103
- N. Weck, Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries, J. Math. Anal. Appl. 46 (1974), 410–437. MR 343771, DOI 10.1016/0022-247X(74)90250-9
- N. Weck, Traces of differential forms on Lipschitz boundaries, Analysis 24 (2004), no. 1-4, 147–170.
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, NJ, 1957. MR 87148
- Karl J. Witsch, A remark on a compactness result in electromagnetic theory, Math. Methods Appl. Sci. 16 (1993), no. 2, 123–129. MR 1200159, DOI 10.1002/mma.1670160205
Bibliographic Information
- Martin W. Licht
- Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive MC0112, La Jolla, California 92093-0112
- MR Author ID: 1225084
- Email: mlicht@ucsd.edu
- Received by editor(s): November 6, 2016
- Received by editor(s) in revised form: May 22, 2017, and January 1, 2017
- Published electronically: April 10, 2018
- Additional Notes: This research was supported by the European Research Council through the FP7-IDEAS-ERC Starting Grant scheme, project 278011 STUCCOFIELDS
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 607-635
- MSC (2010): Primary 65N30; Secondary 58A12
- DOI: https://doi.org/10.1090/mcom/3330
- MathSciNet review: 3882278