Error estimates and convergence rates for filtered back projection
HTML articles powered by AMS MathViewer
- by Matthias Beckmann and Armin Iske;
- Math. Comp. 88 (2019), 801-835
- DOI: https://doi.org/10.1090/mcom/3343
- Published electronically: April 30, 2018
- HTML | PDF | Request permission
Abstract:
We consider the approximation of target functions from fractional Sobolev spaces by the method of filtered back projection (FBP), which gives an inversion of the Radon transform. The objective of this paper is to analyse the intrinsic FBP approximation error which is incurred by the use of a low-pass filter with finite bandwidth. To this end, we prove $\mathrm {L}^2$-error estimates on Sobolev spaces of fractional order. The obtained error bounds are affine-linear with respect to the distance between the filter’s window function and the constant function $1$ in the $\mathrm {L}^\infty$-norm. With assuming more regularity of the window function, we refine the error estimates to prove convergence for the FBP approximation in the $\mathrm {L}^2$-norm as the filter’s bandwidth goes to infinity. Further, we determine asymptotic convergence rates in terms of the bandwidth of the low-pass filter and the smoothness of the target function. Finally, we develop convergence rates for noisy data, where we first prove estimates for the data error, which we then combine with our estimates for the approximation error.References
- M. Beckmann and A. Iske, Error estimates for filtered back projection, IEEE International Conference on Sampling Theory and Applications (SampTA), 2015, 553–557.
- M. Beckmann and A. Iske, Approximation of bivariate functions from fractional Sobolev spaces by filtered back projection, HBAM 2017-05, https://preprint.math. uni-hamburg.de/public/papers/hbam/hbam2017-05.pdf
- Timothy G. Feeman, The mathematics of medical imaging, 2nd ed., Springer Undergraduate Texts in Mathematics and Technology, Springer, Cham, 2015. A beginner’s guide. MR 3410524, DOI 10.1007/978-3-319-22665-1
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- Sigurđur Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. MR 172311, DOI 10.1007/BF02391776
- P. Jonas and A. K. Louis, A Sobolev space analysis of linear regularization methods for ill-posed problems, J. Inverse Ill-Posed Probl. 9 (2001), no. 1, 59–74. MR 1826555, DOI 10.1515/jiip.2001.9.1.59
- A. K. Louis, Corrigendum: “Approximate inverse for linear and some nonlinear problems” [Inverse Problems 11 (1995), no. 6, 1211–1223; MR1361769 (96f:65068)], Inverse Problems 12 (1996), no. 2, 175–190. MR 1382237, DOI 10.1088/0266-5611/12/2/005
- A. K. Louis, A unified approach to regularization methods for linear ill-posed problems, Inverse Problems 15 (1999), no. 2, 489–498. MR 1684469, DOI 10.1088/0266-5611/15/2/009
- A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind, Inverse Problems 6 (1990), no. 3, 427–440. MR 1057035
- A. K. Louis and Th. Schuster, A novel filter design technique in $2$D computerized tomography, Inverse Problems 12 (1996), no. 5, 685–696. MR 1413427, DOI 10.1088/0266-5611/12/5/011
- W. R. Madych, Summability and approximate reconstruction from Radon transform data, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 189–219. MR 1108655, DOI 10.1090/conm/113/1108655
- W. R. Madych, Tomography, approximate reconstruction, and continuous wavelet transforms, Appl. Comput. Harmon. Anal. 7 (1999), no. 1, 54–100. MR 1699598, DOI 10.1006/acha.1998.0258
- P. Munshi, Error analysis of tomographic filters I: theory, NDT & E Int. 25, 1992, 191–194.
- P. Munshi, R. K. S. Rathore, K. S. Ram, and M. S. Kalra, Error estimates for tomographic inversion, Inverse Problems 7 (1991), no. 3, 399–408. MR 1108283
- P. Munshi, R. K. S. Rathore, K. S. Ram, and M. S. Kalra, Error analysis of tomographic filters II: results, NDT & E Int. 26, 1993, 235–240.
- Frank Natterer, A Sobolev space analysis of picture reconstruction, SIAM J. Appl. Math. 39 (1980), no. 3, 402–411. MR 593678, DOI 10.1137/0139034
- F. Natterer, The mathematics of computerized tomography, Classics in Applied Mathematics, vol. 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original. MR 1847845, DOI 10.1137/1.9780898719284
- Johann Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, 75 years of Radon transform (Vienna, 1992) Conf. Proc. Lecture Notes Math. Phys., IV, Int. Press, Cambridge, MA, 1994, pp. 324–339 (German, with German summary). MR 1313944
- P.-A. Raviart, An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) Lecture Notes in Math., vol. 1127, Springer, Berlin, 1985, pp. 243–324. MR 802214, DOI 10.1007/BFb0074532
- A. Rieder, On filter design principles in 2D computerized tomography. In: Radon Transforms and Tomography, T. Quinto, L. Ehrenpreis, A. Faridani, F. Gonzalez, and E. Grinberg (eds.), Amer. Math. Soc., Providence, 2001, 207–226.
- Andreas Rieder and Adel Faridani, The semidiscrete filtered backprojection algorithm is optimal for tomographic inversion, SIAM J. Numer. Anal. 41 (2003), no. 3, 869–892. MR 2005186, DOI 10.1137/S0036142902405643
- Andreas Rieder and Arne Schneck, Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion, Numer. Math. 108 (2007), no. 1, 151–175. MR 2350188, DOI 10.1007/s00211-007-0109-7
- Andreas Rieder and Thomas Schuster, The approximate inverse in action with an application to computerized tomography, SIAM J. Numer. Anal. 37 (2000), no. 6, 1909–1929. MR 1766853, DOI 10.1137/S0036142998347619
- Andreas Rieder and Thomas Schuster, The approximate inverse in action. II. Convergence and stability, Math. Comp. 72 (2003), no. 243, 1399–1415. MR 1972743, DOI 10.1090/S0025-5718-03-01526-6
- Bernd Schomburg, On the approximation of the delta distribution in Sobolev spaces of negative order, Appl. Anal. 36 (1990), no. 1-2, 89–93. MR 1040880, DOI 10.1080/00036819008839923
- Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. MR 490032, DOI 10.1090/S0002-9904-1977-14406-6
Bibliographic Information
- Matthias Beckmann
- Affiliation: Department of Mathematics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
- Email: matthias.beckmann@uni-hamburg.de
- Armin Iske
- Affiliation: Department of Mathematics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
- MR Author ID: 600018
- Email: armin.iske@uni-hamburg.de
- Received by editor(s): March 30, 2016
- Received by editor(s) in revised form: February 10, 2017, and November 22, 2017
- Published electronically: April 30, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 801-835
- MSC (2010): Primary 41A25; Secondary 94A20, 94A08
- DOI: https://doi.org/10.1090/mcom/3343
- MathSciNet review: 3882285