Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index
HTML articles powered by AMS MathViewer
- by Seungchan Ko and Endre Süli;
- Math. Comp. 88 (2019), 1061-1090
- DOI: https://doi.org/10.1090/mcom/3379
- Published electronically: September 10, 2018
- HTML | PDF | Request permission
Abstract:
We consider a system of nonlinear partial differential equations, modeling the motion of a viscous incompressible chemically reacting generalized Newtonian fluid in three space dimensions. The governing system consists of a steady convection-diffusion equation, for the concentration, and a generalized steady power-law-type fluid flow model, for the velocity and the pressure of the fluid, where the viscosity depends on both the shear-rate and the concentration through a concentration-dependent power-law index. The aim of the paper is to perform the mathematical analysis of a finite element approximation of this model. We consider a regularization of the model by introducing an additional term in the momentum equation and construct a finite element approximation of the regularized system. First, the convergence of the finite element method to a weak solution of the regularized model is shown, and we then prove that weak solutions of the regularized problem converge to a weak solution of the original problem.References
- L. Belenki, L. C. Berselli, L. Diening, and M. Růžička, On the finite element approximation of $p$-Stokes systems, SIAM J. Numer. Anal. 50 (2012), no. 2, 373–397. MR 2914267, DOI 10.1137/10080436X
- Alain Bensoussan and Jens Frehse, Regularity results for nonlinear elliptic systems and applications, Applied Mathematical Sciences, vol. 151, Springer-Verlag, Berlin, 2002. MR 1917320, DOI 10.1007/978-3-662-12905-0
- M. E. Bogovskiĭ, Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1037–1040 (Russian). MR 553920
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Miroslav Bulíček, Piotr Gwiazda, Josef Málek, and Agnieszka Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology, Adv. Calc. Var. 2 (2009), no. 2, 109–136. MR 2523124, DOI 10.1515/ACV.2009.006
- Miroslav Bulíček, Josef Málek, and Kumbakonam R. Rajagopal, Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, Partial differential equations and fluid mechanics, London Math. Soc. Lecture Note Ser., vol. 364, Cambridge Univ. Press, Cambridge, 2009, pp. 26–53. MR 2605756
- Miroslav Bulíček and Petra Pustějovská, On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index, J. Math. Anal. Appl. 402 (2013), no. 1, 157–166. MR 3023245, DOI 10.1016/j.jmaa.2012.12.066
- Miroslav Bulíček and Petra Pustějovská, Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid, SIAM J. Math. Anal. 46 (2014), no. 5, 3223–3240. MR 3262601, DOI 10.1137/130927589
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 93649
- Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542, DOI 10.1007/978-3-642-18363-8
- Lars Diening, Christian Kreuzer, and Endre Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, SIAM J. Numer. Anal. 51 (2013), no. 2, 984–1015. MR 3035482, DOI 10.1137/120873133
- Lars Diening, Michael Růžička, and Katrin Schumacher, A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 1, 87–114. MR 2643399, DOI 10.5186/aasfm.2010.3506
- J. Hron, J. Málek, P. Pustějovská, and K. R. Rajagopal, On the modeling of the synovial fluid, Advances in Tribology (2010).
- S. Ko, Existence of global weak solutions for unsteady motions of incompressible chemically reacting generalized newtonian fluids, 2018. Available from arXiv:1803.08020 [math.AP].
- S. Ko, P. Pustějovská, and E. Süli, Finite element approximation of an incompressible chemically reacting non-Newtonian fluid, ESAIM M2AN: Mathematical Modelling and Numerical Analysis, accepted for publication, 2017. Available from arXiv:1703.04766 [math.NA].
- W. Lai, S. Kuei, and V. Mow, Rheological equations for synovial fluids, J. Biomech. Eng., 100 (1978), 169–186.
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- P. Pustějovská, Biochemical and mechanical processes in synovial fluid — modeling, analysis and computational simulations, Ph.D. Thesis, Charles University in Prague and Heidelberg University, 2012. Available electronically from https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/PetraPustejovska/PhD_pustejovska.pdf.
Bibliographic Information
- Seungchan Ko
- Affiliation: Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
- Email: ksm0385@gmail.com
- Endre Süli
- Affiliation: Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
- Email: endre.suli@maths.ox.ac.uk
- Received by editor(s): September 1, 2017
- Received by editor(s) in revised form: April 3, 2018
- Published electronically: September 10, 2018
- Additional Notes: The first author’s work was supported by the UK Engineering and Physical Sciences Research Council [EP/L015811/1].
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 1061-1090
- MSC (2010): Primary 65N30; Secondary 74S05, 76A05
- DOI: https://doi.org/10.1090/mcom/3379
- MathSciNet review: 3904139