3-torsion and conductor of genus 2 curves
Authors:
Tim Dokchitser and Christopher Doris
Journal:
Math. Comp. 88 (2019), 1913-1927
MSC (2010):
Primary 11G20; Secondary 14D10, 11F80, 11G30
DOI:
https://doi.org/10.1090/mcom/3387
Published electronically:
November 14, 2018
MathSciNet review:
3925491
Full-text PDF
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: We give an algorithm to compute the conductor for curves of genus 2. It is based on the analysis of 3-torsion of the Jacobian for genus 2 curves over 2-adic fields.
- [1] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki, A database of genus-2 curves over the rational numbers, LMS J. Comput. Math. 19 (2016), no. suppl. A, 235–254. MR 3540958, https://doi.org/10.1112/S146115701600019X
- [2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
- [3] Nils Bruin, E. Victor Flynn, and Damiano Testa, Descent via (3,3)-isogeny on Jacobians of genus 2 curves, Acta Arith. 165 (2014), no. 3, 201–223. MR 3263947, https://doi.org/10.4064/aa165-3-1
- [4] John Coates, Takako Fukaya, Kazuya Kato, and Ramdorai Sujatha, Root numbers, Selmer groups, and non-commutative Iwasawa theory, J. Algebraic Geom. 19 (2010), no. 1, 19–97. MR 2551757, https://doi.org/10.1090/S1056-3911-09-00504-9
- [5] Fritz-Erdmann Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ. 13 (1940), 357–412 (German). MR 2133
- [6] Tim Dokchitser, Computing special values of motivic 𝐿-functions, Experiment. Math. 13 (2004), no. 2, 137–149. MR 2068888
- [7] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan, Semistable types of hyperelliptic curves, arXiv:1704.08338 (2017), to appear in Contemporary Mathematics.
- [8] Tim Dokchitser and Vladimir Dokchitser, Quotients of hyperelliptic curves and étale cohomology, Q. J. Math. 69 (2018), no. 2, 747–768. MR 3815163, https://doi.org/10.1093/qmath/hax053
- [9] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan, Arithmetic of hyperelliptic curves over local fields, arXiv:1808.02936 (2018).
- [10] T. Dokchitser, V. Dokchitser, and A. Morgan, Tate module and bad reduction, arXiv:1809.10208 (2018).
- [11] C. Doris, PhD thesis, in preparation.
- [12]
C. Doris, ExactpAdics:An exact representation of
-adic numbers, arXiv:1805.09794 (2018).
- [13] C. Doris, Genus2Conductor: A package for computing the conductor exponent of curves of genus 2, https://cjdoris.github.io/Genus2Conductor.
- [14] E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, https://doi.org/10.1090/S0025-5718-01-01320-5
- [15] Christian Greve and Sebastian Pauli, Ramification polygons, splitting fields, and Galois groups of Eisenstein polynomials, Int. J. Number Theory 8 (2012), no. 6, 1401–1424. MR 2965757, https://doi.org/10.1142/S1793042112500832
- [16] A. Grothendieck, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in MMath., vol. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313-523.
- [17] Jordi Guàrdia, Enric Nart, and Sebastian Pauli, Single-factor lifting and factorization of polynomials over local fields, J. Symbolic Comput. 47 (2012), no. 11, 1318–1346. MR 2927133, https://doi.org/10.1016/j.jsc.2012.03.001
- [18] Charles Helou, Non-Galois ramification theory of local fields, Algebra Berichte [Algebra Reports], vol. 64, Verlag Reinhard Fischer, Munich, 1990. MR 1076620
- [19] Franz-Viktor Kuhlmann, Maps on ultrametric spaces, Hensel’s lemma, and differential equations over valued fields, Comm. Algebra 39 (2011), no. 5, 1730–1776. MR 2821504, https://doi.org/10.1080/00927871003789157
- [20] Claus Lehr and Michel Matignon, Wild monodromy and automorphisms of curves, Duke Math. J. 135 (2006), no. 3, 569–586. MR 2272976, https://doi.org/10.1215/S0012-7094-06-13535-4
- [21] Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), no. 2, 201–222 (French). MR 1202389, https://doi.org/10.1007/BF01444884
- [22] Qing Liu, Modèles minimaux des courbes de genre deux, J. Reine Angew. Math. 453 (1994), 137–164 (French). MR 1285783, https://doi.org/10.1515/crll.1994.453.137
- [23] LMFDB, L-functions and modular forms database, www.lmfdb.org.
- [24] Yukihiko Namikawa and Kenji Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143–186. MR 369362, https://doi.org/10.1007/BF01297652
- [25] A. P. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1–21. MR 207694, https://doi.org/10.2307/2373092
- [26] Sebastian Pauli and Brian Sinclair, Enumerating extensions of (𝜋)-adic fields with given invariants, Int. J. Number Theory 13 (2017), no. 8, 2007–2038. MR 3681687, https://doi.org/10.1142/S1793042117501081
- [27] Irving Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146. MR 83493, https://doi.org/10.1090/S0002-9939-1957-0083493-6
- [28] Takeshi Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J. 57 (1988), no. 1, 151–173. MR 952229, https://doi.org/10.1215/S0012-7094-88-05706-7
- [29] C. Schembri, Examples of genuine false elliptic curves which are modular, arXiv: 1804.07225 (2018), to appear.
- [30] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, https://doi.org/10.2307/1970722
- [31] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039
- [32] Douglas Ulmer, Conductors of ℓ-adic representations, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2291–2299. MR 3477046, https://doi.org/10.1090/S0002-9939-2015-12880-8
Retrieve articles in Mathematics of Computation with MSC (2010): 11G20, 14D10, 11F80, 11G30
Retrieve articles in all journals with MSC (2010): 11G20, 14D10, 11F80, 11G30
Additional Information
Tim Dokchitser
Affiliation:
Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Email:
tim.dokchitser@bristol.ac.uk
Christopher Doris
Affiliation:
Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Email:
christopher.doris@bristol.ac.uk
DOI:
https://doi.org/10.1090/mcom/3387
Keywords:
Conductor,
hyperelliptic curves,
3-torsion,
local fields
Received by editor(s):
July 6, 2017
Received by editor(s) in revised form:
February 14, 2018, and April 25, 2018
Published electronically:
November 14, 2018
Additional Notes:
This research was partially supported by an EPSRC grant EP/M016838/1 “Arithmetic of hyperelliptic curves” and by GCHQ
Article copyright:
© Copyright 2018
American Mathematical Society