Convergent expansions of the confluent hypergeometric functions in terms of elementary functions
HTML articles powered by AMS MathViewer
- by Blanca Bujanda, José L. López and Pedro J. Pagola;
- Math. Comp. 88 (2019), 1773-1789
- DOI: https://doi.org/10.1090/mcom/3389
- Published electronically: November 5, 2018
- HTML | PDF | Request permission
Abstract:
We consider the confluent hypergeometric function $M(a,b;z)$ for $z\in \mathbb {C}$ and $\Re b>\Re a>0$, and the confluent hypergeometric function $U(a,b;z)$ for $b\in \mathbb {C}$, $\Re a>0$, and $\Re z>0$. We derive two convergent expansions of $M(a,b;z)$; one of them in terms of incomplete gamma functions $\gamma (a,z)$ and another one in terms of rational functions of $e^z$ and $z$. We also derive a convergent expansion of $U(a,b;z)$ in terms of incomplete gamma functions $\gamma (a,z)$ and $\Gamma (a,z)$. The expansions of $M(a,b;z)$ hold uniformly in either $\Re z\ge 0$ or $\Re z\le 0$; the expansion of $U(a,b;z)$ holds uniformly in $\Re z>0$. The accuracy of the approximations is illustrated by means of some numerical experiments.References
- José L. López and Ester Pérez Sinusía, New series expansions for the confluent hypergeometric function $M(a,b,z)$, Appl. Math. Comput. 235 (2014), 26–31. MR 3194578, DOI 10.1016/j.amc.2014.02.099
- Blanca Bujanda, José L. López, and Pedro J. Pagola, Convergent expansions of the incomplete gamma functions in terms of elementary functions, Anal. Appl. (Singap.) 16 (2018), no. 3, 435–448. MR 3810632, DOI 10.1142/S0219530517500099
- José L. López, Convergent expansions of the Bessel functions in terms of elementary functions, Adv. Comput. Math. 44 (2018), no. 1, 277–294. MR 3755750, DOI 10.1007/s10444-017-9543-y
- Keith E. Muller, Computing the confluent hypergeometric function, $M(a,b,x)$, Numer. Math. 90 (2001), no. 1, 179–196. MR 1868767, DOI 10.1007/s002110100285
- R. B. Paris, Incomplete Gamma functions, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, pp. 173–192 (Chapter 8).
- A. B. Olde Daalhuis, Confluent hypergeometric functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 321–349. MR 2655353
- A. B. Olde Daalhuis, Hypergeometric function, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 383–401. MR 2655355
- R. A. Askey and A. B. Olde Daalhuis, Generalized hypergeometric functions and Meijer $G$-function, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 403–418. MR 2655356
- Nico M. Temme, Large parameter cases of the Gauss hypergeometric function, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 441–462. MR 1985714, DOI 10.1016/S0377-0427(02)00627-1
- R. Wong, Asymptotic approximations of integrals, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. MR 1016818
Bibliographic Information
- Blanca Bujanda
- Affiliation: Departamento de Estadística, Informática y Mathemáticas and InaMat, Universidad Pública de Navarra, Pamplona, Spain
- MR Author ID: 636519
- Email: blanca.bujanda@unavarra.es
- José L. López
- Affiliation: Departamento de Estadística, Informática y Mathemáticas and InaMat, Universidad Pública de Navarra, Pamplona, Spain
- ORCID: 0000-0002-6050-9015
- Email: jl.lopez@unavarra.es
- Pedro J. Pagola
- Affiliation: Departamento de Estadística, Informática y Mathemáticas, Universidad Pública de Navarra, Pamplona, Spain
- MR Author ID: 806866
- Email: pedro.pagola@unavarra.es
- Received by editor(s): October 25, 2017
- Received by editor(s) in revised form: May 2, 2018
- Published electronically: November 5, 2018
- Additional Notes: This research was supported by the Spanish Ministry of Economía y Competitividad, projects MTM2014-53178-P and TEC2013-45585-C2-1-R.
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 1773-1789
- MSC (2010): Primary 33C15; Secondary 41A58
- DOI: https://doi.org/10.1090/mcom/3389
- MathSciNet review: 3925484