On the constant factor in several related asymptotic estimates
HTML articles powered by AMS MathViewer
- by Andreas Weingartner;
- Math. Comp. 88 (2019), 1883-1902
- DOI: https://doi.org/10.1090/mcom/3402
- Published electronically: December 26, 2018
- HTML | PDF | Request permission
Abstract:
We establish formulas for the constant factor in several asymptotic estimates related to the distribution of integer and polynomial divisors. The formulas are then used to approximate these factors numerically.References
- Christian Axler, New estimates for some functions defined over primes, Integers 18 (2018), Paper No. A52, 21. MR 3813836
- P. Dusart, Estimates of Some Functions Over Primes without R.H., arXiv:1002.0442 (2018).
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- Maurice Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37 (1991), no. 1, 1–36 (French, with English summary). MR 1089787, DOI 10.1016/S0022-314X(05)80022-8
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Karl K. Norton, Upper bounds for sums of powers of divisor functions, J. Number Theory 40 (1992), no. 1, 60–85. MR 1145854, DOI 10.1016/0022-314X(92)90028-N
- Carl Pomerance, Lola Thompson, and Andreas Weingartner, On integers $n$ for which $X^n-1$ has a divisor of every degree, Acta Arith. 175 (2016), no. 3, 225–243. MR 3557122, DOI 10.4064/aa8354-6-2016
- G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187–213 (French, with English summary). MR 774171
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Eric Saias, Entiers à diviseurs denses. I, J. Number Theory 62 (1997), no. 1, 163–191 (French, with English summary). MR 1430008, DOI 10.1006/jnth.1997.2057
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Waclaw Sierpiński, Sur une propriété des nombres naturels, Ann. Mat. Pura Appl. (4) 39 (1955), 69–74 (French). MR 75219, DOI 10.1007/BF02410762
- A. K. Srinivasan, Practical numbers, Current Sci. 17 (1948), 179–180. MR 27799
- B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779–785. MR 64800, DOI 10.2307/2372651
- Gérald Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 1–30 (French). MR 860809
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300
- Lola Thompson, Polynomials with divisors of every degree, J. Number Theory 132 (2012), no. 5, 1038–1053. MR 2890525, DOI 10.1016/j.jnt.2011.10.005
- Andreas Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), no. 2, 743–758. MR 3356847, DOI 10.1093/qmath/hav006
- Andreas Weingartner, On the degrees of polynomial divisors over finite fields, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 3, 469–487. MR 3569157, DOI 10.1017/S030500411600044X
- Andreas Weingartner, A sieve problem and its application, Mathematika 63 (2017), no. 1, 213–229. MR 3610011, DOI 10.1112/S002557931600022X
Bibliographic Information
- Andreas Weingartner
- Affiliation: Department of Mathematics, 351 West University Boulevard, Southern Utah University, Cedar City, Utah 84720
- MR Author ID: 678374
- Email: weingartner@suu.edu
- Received by editor(s): May 17, 2017
- Received by editor(s) in revised form: July 17, 2018
- Published electronically: December 26, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 1883-1902
- MSC (2010): Primary 11N25, 11Y60
- DOI: https://doi.org/10.1090/mcom/3402
- MathSciNet review: 3925489