Covariants of binary sextics and modular forms of degree 2 with character
HTML articles powered by AMS MathViewer
- by Fabien Cléry, Carel Faber and Gerard van der Geer HTML | PDF
- Math. Comp. 88 (2019), 2423-2441 Request permission
Abstract:
We use covariants of binary sextics to describe the structure of modules of scalar-valued or vector-valued Siegel modular forms of degree $2$ with character, over the ring of scalar-valued Siegel modular forms of even weight. For a modular form defined by a covariant we express the order of vanishing along the locus of products of elliptic curves in terms of the covariant.References
- Jonas Bergström, Carel Faber, and Gerard van der Geer, Siegel modular forms of genus 2 and level 2: cohomological computations and conjectures, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 100, 20. MR 2439544, DOI 10.1093/imrn/rnn100
- J. Bergström, C. Faber, and G. van der Geer, Siegel modular forms of degree two and three, 2018, URL http://smf.compositio.nl
- Jaydeep Chipalkatti, On the saturation sequence of the rational normal curve, J. Pure Appl. Algebra 214 (2010), no. 9, 1598–1611. MR 2593686, DOI 10.1016/j.jpaa.2009.12.005
- Fabien Cléry, Carel Faber, and Gerard van der Geer, Covariants of binary sextics and vector-valued Siegel modular forms of genus two, Math. Ann. 369 (2017), no. 3-4, 1649–1669. MR 3713554, DOI 10.1007/s00208-016-1510-2
- Fabien Cléry and Gerard van der Geer, On vector-valued Siegel modular forms of degree 2 and weight $(j,2)$, Doc. Math. 23 (2018), 1129–1156. With two appendices by Gaëtan Chenevier. MR 3874950
- Fabien Cléry, Gerard van der Geer, and Samuel Grushevsky, Siegel modular forms of genus 2 and level 2, Internat. J. Math. 26 (2015), no. 5, 1550034, 51. MR 3345511, DOI 10.1142/S0129167X15500342
- Ron Donagi and Roy Campbell Smith, The structure of the Prym map, Acta Math. 146 (1981), no. 1-2, 25–102. MR 594627, DOI 10.1007/BF02392458
- C. H. van Dorp, Generators for a module of vector-valued Siegel modular forms of degree 2, arXiv:1301.2910.
- Eberhard Freitag, Ein Verschwindungssatz für automorphe Formen zur Siegelschen Modulgruppe, Math. Z. 165 (1979), no. 1, 11–18 (German). MR 521517, DOI 10.1007/BF01175126
- Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101, DOI 10.1007/978-3-642-61553-5
- John Hilton Grace and Alfred Young, The algebra of invariants, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010. Reprint of the 1903 original. MR 2850282, DOI 10.1017/CBO9780511708534
- Tomoyoshi Ibukiyama, Vector valued Siegel modular forms of symmetric tensor weight of small degrees, Comment. Math. Univ. St. Pauli 61 (2012), no. 1, 51–75. MR 3012313
- Tomoyoshi Ibukiyama and Satoshi Wakatsuki, Siegel modular forms of small weight and the Witt operator, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 189–209. MR 2537101, DOI 10.1090/conm/493/09669
- Jun-ichi Igusa, On Siegel modular forms genus two. II, Amer. J. Math. 86 (1964), 392–412. MR 168805, DOI 10.2307/2373172
- Tomoya Kiyuna, Vector-valued Siegel modular forms of weight $\det ^k\otimes \rm {Sym}(8)$, Internat. J. Math. 26 (2015), no. 1, 1550004, 16. MR 3313650, DOI 10.1142/S0129167X15500044
- Hans Maass, Die Multiplikatorsysteme zur Siegelschen Modulgruppe, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1964 (1964), 125–135 (German). MR 168659
- Takakazu Satoh, On certain vector valued Siegel modular forms of degree two, Math. Ann. 274 (1986), no. 2, 335–352. MR 838473, DOI 10.1007/BF01457078
- T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR 0447428
- Sho Takemori, Structure theorems for vector valued Siegel modular forms of degree $2$ and weight $\det ^k\otimes \textrm {Sym}(10)$, Internat. J. Math. 27 (2016), no. 12, 1650101, 33. MR 3575925, DOI 10.1142/S0129167X16501019
- Don Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 1–103. MR 2409678, DOI 10.1007/978-3-540-74119-0_{1}
Additional Information
- Fabien Cléry
- Affiliation: Department of Mathematical Sciences, Loughborough University, United Kingdom
- Email: cleryfabien@gmail.com
- Carel Faber
- Affiliation: Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, 3508 TA Utrecht, The Netherlands
- MR Author ID: 64735
- Email: C.F.Faber@uu.nl
- Gerard van der Geer
- Affiliation: Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 194375
- Email: G.B.M.vanderGeer@uva.nl
- Received by editor(s): March 29, 2018
- Received by editor(s) in revised form: September 12, 2018, and November 1, 2018
- Published electronically: January 30, 2019
- Additional Notes: The research of the first author was supported by the EPSRC grant EP/N031369/1.
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2423-2441
- MSC (2010): Primary 11F11, 16W22; Secondary 14H45
- DOI: https://doi.org/10.1090/mcom/3412
- MathSciNet review: 3957899