Volterra-type convolution of classical polynomials
HTML articles powered by AMS MathViewer
- by Ana F. Loureiro and Kuan Xu;
- Math. Comp. 88 (2019), 2351-2381
- DOI: https://doi.org/10.1090/mcom/3427
- Published electronically: April 2, 2019
- HTML | PDF | Request permission
Abstract:
We present a general framework for calculating the Volterra-type convolution of polynomials from an arbitrary polynomial sequence $\{P_k(x)\}_{k \geqslant 0}$ with $\deg P_k(x) = k$. Based on this framework, series representations for the convolutions of classical orthogonal polynomials, including Jacobi and Laguerre families, are derived, along with some relevant results pertaining to these new formulas.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- I. Area, E. Godoy, A. Ronveaux, and A. Zarzo, Solving connection and linearization problems within the Askey scheme and its $q$-analogue via inversion formulas, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 2001, pp. 151–162. MR 1858275, DOI 10.1016/S0377-0427(00)00640-3
- Richard Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975. MR 481145
- Richard Askey and James Fitch, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl. 26 (1969), 411–437. MR 237847, DOI 10.1016/0022-247X(69)90165-6
- Kendall E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge Monographs on Applied and Computational Mathematics, vol. 4, Cambridge University Press, Cambridge, 1997. MR 1464941, DOI 10.1017/CBO9780511626340
- H. Brunner and P. J. van der Houwen, The numerical solution of Volterra equations, CWI Monographs, vol. 3, North-Holland Publishing Co., Amsterdam, 1986. MR 871871
- W. Bryc, W. Matysiak, R. Szwarc, and J. Wesolowski, Projection formulas for orthogonal polynomials, arXiv:math/0606092v2, 2007.
- Steven B. Damelin and Willard Miller Jr., The mathematics of signal processing, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2012. MR 2883645
- Dean G. Duffy, Green’s functions with applications, 2nd ed., Advances in Applied Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3379916, DOI 10.1201/b18159
- D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2011.
- Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik, Table of integrals, series, and products, Academic press, 2014.
- Thomas Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 47–106. MR 1819643, DOI 10.1017/S0962492900002890
- R. Hilfer (ed.), Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1890104, DOI 10.1142/9789812817747
- Robert V. Hogg and Allen T. Craig, Introduction to mathematical statistics, 3rd ed., The Macmillan Company, New York; Collier Macmillan Ltd., London, 1970. MR 251823
- Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
- Mourad E. H. Ismail, Erik Koelink, and Pablo Román, Generalized Burchnall-type identities for orthogonal polynomials and expansions, SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018), Paper No. 072, 24. MR 3828871, DOI 10.3842/SIGMA.2018.072
- H. T. Koelink and J. Van Der Jeugt, Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal. 29 (1998), no. 3, 794–822. MR 1617724, DOI 10.1137/S003614109630673X
- Wolfram Koepf and Dieter Schmersau, Representations of orthogonal polynomials, J. Comput. Appl. Math. 90 (1998), no. 1, 57–94. MR 1627168, DOI 10.1016/S0377-0427(98)00023-5
- S. Lewanowicz, The hypergeometric functions approach to the connection problem for the classical orthogonal polynomials, Technical Report, 1998.
- Peter Linz, Analytical and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR 796318, DOI 10.1137/1.9781611970852
- Yudell L. Luke, The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York-London, 1969. MR 241700
- P. Maroni, Semi-classical character and finite-type relations between polynomial sequences, Appl. Numer. Math. 31 (1999), no. 3, 295–330. MR 1711161, DOI 10.1016/S0168-9274(98)00137-8
- P. Maroni and Z. da Rocha, Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation, Numer. Algorithms 47 (2008), no. 3, 291–314. MR 2385739, DOI 10.1007/s11075-008-9184-9
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Earl D. Rainville, Special functions, 1st ed., Chelsea Publishing Co., Bronx, NY, 1971. MR 393590
- J. Sánchez-Ruiz, P. L. ArtĂ©s, A. MartĂnez-Finkelshtein, and J. S. Dehesa, General linearization formulae for products of continuous hypergeometric-type polynomials, J. Phys. A 32 (1999), no. 42, 7345–7366. MR 1747172, DOI 10.1088/0305-4470/32/42/308
- Eduardo D. Sontag, Mathematical control theory, 2nd ed., Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998. Deterministic finite-dimensional systems. MR 1640001, DOI 10.1007/978-1-4612-0577-7
- Ivar Stakgold and Michael Holst, Green’s functions and boundary value problems, 3rd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2011. MR 2789179, DOI 10.1002/9780470906538
- Gabor Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, New York, 1939. MR 77
- D. D. Tcheutia, On connection, linearization and duplication coefficients of classical orthogonal polynomials, Ph.D. thesis, Kassel: Universitätsbibliothek, 2014.
- Lloyd N. Trefethen, Approximation theory and approximation practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. MR 3012510
- C. Wagner, T. HĂĽttl, and P. Sagaut, Large-Eddy Simulation for Acoustics, Cambridge University Press, 2007.
- Jet Wimp, Connection coefficients, orthogonal polynomials and the WZ-algorithms, Numer. Algorithms 21 (1999), no. 1-4, 377–386. Numerical methods for partial differential equations (Marrakech, 1998). MR 1725736, DOI 10.1023/A:1019117731699
- Kuan Xu and Ana F. Loureiro, Spectral approximation of convolution operators, SIAM J. Sci. Comput. 40 (2018), no. 4, A2336–A2355. MR 3835595, DOI 10.1137/17M1149249
- A. Zarzo, I. Area, E. Godoy, and A. Ronveaux, Results for some inversion problems for classical continuous and discrete orthogonal polynomials, J. Phys. A 30 (1997), no. 3, L35–L40. MR 1449238, DOI 10.1088/0305-4470/30/3/002
Bibliographic Information
- Ana F. Loureiro
- Affiliation: School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Sibson Building, Canterbury, CT2 7FS, United Kingdom
- MR Author ID: 793430
- Email: A.Loureiro@kent.ac.uk
- Kuan Xu
- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, People’s Republic of China
- MR Author ID: 1010592
- Email: kuanxu@ustc.edu.cn
- Received by editor(s): April 26, 2018
- Received by editor(s) in revised form: October 29, 2018
- Published electronically: April 2, 2019
- Additional Notes: The first author is the corresponding author
The second author was funded in part by Anhui Initiative in Quantum Information Technologies under grant AHY150200. - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2351-2381
- MSC (2010): Primary 42A85, 44A35, 33C05, 33C20, 33C45; Secondary 42A10, 41A10, 41A58
- DOI: https://doi.org/10.1090/mcom/3427
- MathSciNet review: 3957896