Hamilton–Jacobi equations on an evolving surface
HTML articles powered by AMS MathViewer
- by Klaus Deckelnick, Charles M. Elliott, Tatsu-Hiko Miura and Vanessa Styles;
- Math. Comp. 88 (2019), 2635-2664
- DOI: https://doi.org/10.1090/mcom/3420
- Published electronically: March 26, 2019
- HTML | PDF | Request permission
Abstract:
We consider the well-posedness and numerical approximation of a Hamilton–Jacobi equation on an evolving hypersurface in $\mathbb R^3$. Definitions of viscosity sub- and supersolutions are extended in a natural way to evolving hypersurfaces and provide uniqueness by comparison. An explicit in time monotone numerical approximation is derived on evolving interpolating triangulated surfaces. The scheme relies on a finite volume discretisation which does not require acute triangles. The scheme is shown to be stable and consistent leading to an existence proof via the proof of convergence. Finally an error bound is proved of the same order as in the flat stationary case.References
- David Adalsteinsson and J. A. Sethian, Transport and diffusion of material quantities on propagating interfaces via level set methods, J. Comput. Phys. 185 (2003), no. 1, 271–288. MR 2010161, DOI 10.1016/S0021-9991(02)00057-8
- Amal Alphonse, Charles M. Elliott, and Björn Stinner, An abstract framework for parabolic PDEs on evolving spaces, Port. Math. 72 (2015), no. 1, 1–46. MR 3323509, DOI 10.4171/PM/1955
- Amal Alphonse, Charles M. Elliott, and Björn Stinner, On some linear parabolic PDEs on moving hypersurfaces, Interfaces Free Bound. 17 (2015), no. 2, 157–187. MR 3391968, DOI 10.4171/IFB/338
- Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411, DOI 10.1007/978-0-8176-4755-1
- Guy Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, Hamilton-Jacobi equations: approximations, numerical analysis and applications, Lecture Notes in Math., vol. 2074, Springer, Heidelberg, 2013, pp. 49–109. MR 3135340, DOI 10.1007/978-3-642-36433-4_{2}
- John W. Barrett, Harald Garcke, and Robert Nürnberg, On the stable numerical approximation of two-phase flow with insoluble surfactant, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 2, 421–458. MR 3342212, DOI 10.4208/cicp.190313.010813a
- T. Bretschneider, C.-J. Du, C. M. Elliott, T. Ranner, and B. Stinner, Solving reaction-diffusion equations on evolving surfaces defined by biological image data, arXiv preprint arXiv:1606.05093, 2016.
- Li-Tien Cheng, Paul Burchard, Barry Merriman, and Stanley Osher, Motion of curves constrained on surfaces using a level-set approach, J. Comput. Phys. 175 (2002), no. 2, 604–644. MR 1880120, DOI 10.1006/jcph.2001.6960
- M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), no. 167, 1–19. MR 744921, DOI 10.1090/S0025-5718-1984-0744921-8
- G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR 2317005, DOI 10.1093/imanum/drl023
- Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. MR 3038698, DOI 10.1017/S0962492913000056
- Gerhard Dziuk, Dietmar Kröner, and Thomas Müller, Scalar conservation laws on moving hypersurfaces, Interfaces Free Bound. 15 (2013), no. 2, 203–236. MR 3105772, DOI 10.4171/IFB/301
- C. Eilks and C. M. Elliott, Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, J. Comput. Phys. 227 (2008), no. 23, 9727–9741. MR 2469030, DOI 10.1016/j.jcp.2008.07.023
- C. M. Elliott, B. Stinner, and C. Venkataraman, Modelling cell motility and chemotaxis with evolving surface finite elements, J. Royal Soc. Interface 9 (2012), no. 76, 3027–3044.
- Jan Giesselmann and Thomas Müller, Geometric error of finite volume schemes for conservation laws on evolving surfaces, Numer. Math. 128 (2014), no. 3, 489–516. MR 3268845, DOI 10.1007/s00211-014-0621-5
- Yoshikazu Giga, Surface evolution equations, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR 2238463
- Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken, Incompressible fluid problems on embedded surfaces: modeling and variational formulations, Interfaces Free Bound. 20 (2018), no. 3, 353–377. MR 3875687, DOI 10.4171/IFB/405
- Kwangil Kim and Yonghai Li, Convergence of finite volume schemes for Hamilton-Jacobi equations with Dirichlet boundary conditions, J. Comput. Math. 33 (2015), no. 3, 227–247. MR 3352357, DOI 10.4208/jcm.1411-m4406
- G. Kossioris, Ch. Makridakis, and P. E. Souganidis, Finite volume schemes for Hamilton-Jacobi equations, Numer. Math. 83 (1999), no. 3, 427–442. MR 1715569, DOI 10.1007/s002110050457
- Balázs Kovács and Christian Andreas Power Guerra, Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces, Numer. Methods Partial Differential Equations 32 (2016), no. 4, 1200–1231. MR 3494140, DOI 10.1002/num.22047
- Daniel Lengeler and Thomas Müller, Scalar conservation laws on constant and time-dependent Riemannian manifolds, J. Differential Equations 254 (2013), no. 4, 1705–1727. MR 3003289, DOI 10.1016/j.jde.2012.11.002
- Martin Lenz, Simplice Firmin Nemadjieu, and Martin Rumpf, A convergent finite volume scheme for diffusion on evolving surfaces, SIAM J. Numer. Anal. 49 (2011), no. 1, 15–37. MR 2764419, DOI 10.1137/090776767
- Xiang-Gui Li, Wei Yan, and C. K. Chan, Numerical schemes for Hamilton-Jacobi equations on unstructured meshes, Numer. Math. 94 (2003), no. 2, 315–331. MR 1974558, DOI 10.1007/s00211-002-0418-9
- Colin B. Macdonald and Steven J. Ruuth, Level set equations on surfaces via the closest point method, J. Sci. Comput. 35 (2008), no. 2-3, 219–240. MR 2429939, DOI 10.1007/s10915-008-9196-6
- Carlo Mantegazza and Andrea Carlo Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003), no. 1, 1–25. MR 1941909, DOI 10.1007/s00245-002-0736-4
- Maxim A. Olshanskii and Arnold Reusken, Error analysis of a space-time finite element method for solving PDEs on evolving surfaces, SIAM J. Numer. Anal. 52 (2014), no. 4, 2092–2120. MR 3249367, DOI 10.1137/130936877
- Knut Erik Teigen, Xiangrong Li, John Lowengrub, Fan Wang, and Axel Voigt, A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci. 7 (2009), no. 4, 1009–1037. MR 2604629
- Morten Vierling, Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control—theory and numerical realization, Interfaces Free Bound. 16 (2014), no. 2, 137–173. MR 3231969, DOI 10.4171/IFB/316
- Jian-Jun Xu and Hong-Kai Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (2003), no. 1-3, 573–594. Special issue in honor of the sixtieth birthday of Stanley Osher. MR 2028859, DOI 10.1023/A:1025336916176
Bibliographic Information
- Klaus Deckelnick
- Affiliation: Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany
- MR Author ID: 318167
- Email: klaus.deckelnick@ovgu.de
- Charles M. Elliott
- Affiliation: Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom
- MR Author ID: 62960
- ORCID: 0000-0002-6924-4455
- Email: c.m.elliott@warwick.ac.uk
- Tatsu-Hiko Miura
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan
- MR Author ID: 1219669
- Email: thmiura@ms.u-tokyo.ac.jp
- Vanessa Styles
- Affiliation: School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
- MR Author ID: 653122
- Email: v.styles@sussex.ac.uk
- Received by editor(s): November 17, 2017
- Received by editor(s) in revised form: October 4, 2018, October 8, 2018, and December 12, 2018
- Published electronically: March 26, 2019
- Additional Notes: The work of the second author was partially supported by the Royal Society via a Wolfson Research Merit Award.
The work of the third author was partially supported by Grant–in–Aid for JSPS Fellows No. 16J02664 and the Program for Leading Graduate Schools, MEXT, Japan. - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 88 (2019), 2635-2664
- MSC (2010): Primary 65M08, 35F21, 35D40
- DOI: https://doi.org/10.1090/mcom/3420
- MathSciNet review: 3985471