Some modular abelian surfaces
HTML articles powered by AMS MathViewer
- by Frank Calegari, Shiva Chidambaram and Alexandru Ghitza;
- Math. Comp. 89 (2020), 387-394
- DOI: https://doi.org/10.1090/mcom/3434
- Published electronically: April 1, 2019
- HTML | PDF | Request permission
Abstract:
In this note, we use the main theorem of Boxer, Calegari, Gee, and Pilloni in Abelian surfaces over totally real fields are potentially modular ( arXiv:1812.09269, 2018) to give explicit examples of modular abelian surfaces $A$ with $\operatorname {End}_{\mathbf {C}} A = \mathbf {Z}$ and $A$ smooth outside $2$, $3$, $5$, and $7$.References
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843â939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- G. Boxer, F. Calegari, T. Gee, and V. Pilloni, Abelian surfaces over totally real fields are potentially modular, arXiv:1812.09269 [math.NT], 2018.
- Hans Ulrich Besche, Bettina Eick, and E. A. OâBrien, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623â644. MR 1935567, DOI 10.1142/S0218196702001115
- T. Berger and K. Klosin, Deformations of Saito-Kurokawa type and the Paramodular Conjecture (with an appendix by Cris Poor, Jerry Shurman, and David S. Yuen), arXiv:1710.10228 [math.NT], 2017.
- A. Brumer, A. Pacetti, C. Poor, G. TornarĂa, J. Voight, and D. S. Yuen, On the paramodularity of typical abelian surfaces, arXiv:1805.10873 [math.NT], 2018.
- Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki, A database of genus-2 curves over the rational numbers, LMS J. Comput. Math. 19 (2016), no. suppl. A, 235â254. MR 3540958, DOI 10.1112/S146115701600019X
- J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus $2$, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, Cambridge, 1996. MR 1406090, DOI 10.1017/CBO9780511526084
- Francesc FitĂ©, Kiran S. Kedlaya, VĂctor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390â1442. MR 2982436, DOI 10.1112/S0010437X12000279
- Cris Poor, Jerry Shurman, and David S. Yuen, Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory 13 (2017), no. 10, 2627â2652. MR 3713095, DOI 10.1142/S1793042117501469
- Cris Poor and David S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401â1438. MR 3315514, DOI 10.1090/S0025-5718-2014-02870-6
- B. Riemann, Ăber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, 1859, pp. 671â680.
- Jean-Pierre Serre, Facteurs locaux des fonctions zĂȘta des varietĂ©s algĂ©briques (dĂ©finitions et conjectures), SĂ©minaire Delange-Pisot-Poitou. 11e annĂ©e: 1969/70. ThĂ©orie des nombres. Fasc. 1: ExposĂ©s 1 Ă 15; Fasc. 2: ExposĂ©s 16 Ă 24, SecrĂ©tariat Math., Paris, 1970, pp. 15 (French). MR 3618526
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553â572. MR 1333036, DOI 10.2307/2118560
- Andrew Wiles, Modular elliptic curves and Fermatâs last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443â551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Frank Calegari
- Affiliation: Department of Mathematics, The University of Chicago, 5734 S University Avenue, Chicago, Illinois 60637; and School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia
- MR Author ID: 678536
- Email: fcale@math.uchicago.edu
- Shiva Chidambaram
- Affiliation: Department of Mathematics, The University of Chicago, 5734 S University Avenue, Chicago, Illinois 60637
- Email: shivac@uchicago.edu
- Alexandru Ghitza
- Affiliation: School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia
- MR Author ID: 713726
- Email: aghitza@alum.mit.edu
- Received by editor(s): November 4, 2018
- Received by editor(s) in revised form: February 5, 2019
- Published electronically: April 1, 2019
- Additional Notes: The first author was supported in part by NSF Grant DMS-1701703.
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 387-394
- MSC (2010): Primary 11G10, 11F46; Secondary 11Y40, 11F80
- DOI: https://doi.org/10.1090/mcom/3434
- MathSciNet review: 4011548