An improved sieve of Eratosthenes
HTML articles powered by AMS MathViewer
- by Harald Andrés Helfgott;
- Math. Comp. 89 (2020), 333-350
- DOI: https://doi.org/10.1090/mcom/3438
- Published electronically: April 23, 2019
- HTML | PDF | Request permission
Abstract:
We show how to carry out a sieve of Eratosthenes up to $N$ in space $O\left (N^{1/3} (\log N)^{2/3}\right )$ and time $O(N \log N)$. In comparison, the usual versions of the sieve take space about $O(\sqrt {N})$ and time at least linear on $N$. We can also apply our sieve to any subinterval of $\lbrack 1,N\rbrack$ of length $\Omega \left (N^{1/3}\right )$ in time close to linear on the length of the interval. Before, such a thing was possible only for subintervals of $\lbrack 1,N\rbrack$ of length $\Omega (\sqrt {N})$.
Just as in (Galway, 2000), the approach here is related to Diophantine approximation, and also has close ties to Voronoï’s work on the Dirichlet divisor problem. The advantage of the method here resides in the fact that, because the method we will give is based on the sieve of Eratosthenes, we will also be able to use it to factor integers, and not just to produce lists of consecutive primes.
References
- A. O. L. Atkin and D. J. Bernstein, Prime sieves using binary quadratic forms, Math. Comp. 73 (2004), no. 246, 1023–1030. MR 2031423, DOI 10.1090/S0025-5718-03-01501-1
- T. Oliveira e Silva, Fast implementation of the segmented sieve of Eratosthenes, http://sweet.ua.pt/tos/software/prime_sieve.html. Accessed: 2016-6-22.
- William F. Galway, Dissecting a sieve to cut its need for space, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 297–312. MR 1850613, DOI 10.1007/10722028_{1}7
- Greg Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture, Math. Comp. 87 (2018), no. 310, 1013–1028. MR 3739227, DOI 10.1090/mcom/3275
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- A. Ya. Khinchin, Continued fractions, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR 1451873
- E. Landau, Die Bedeutung der Pfeifferschen Methode für die analytische Zahlentheorie, Wien. Ber. 121 (1912), 2196–2332.
- Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4\cdot 10^{18}$, Math. Comp. 83 (2014), no. 288, 2033–2060. MR 3194140, DOI 10.1090/S0025-5718-2013-02787-1
- A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138–160. MR 783538, DOI 10.1515/crll.1985.357.138
- E. Pfeiffer, Über die Periodicität in der Teilbarkeit der Zahlen und über die Verteilung der Klassen positiver quadratischer Formen auf ihre Determinanten, Jahresbericht der Pfeiffer’schen Lehr- und Erziehungs-Anstalt zu Jena, 1886, pages 1–21.
- Paul Pritchard, Fast compact prime number sieves (among others), J. Algorithms 4 (1983), no. 4, 332–344. MR 729229, DOI 10.1016/0196-6774(83)90014-7
- M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical report, Cambridge, MA, USA, 1979.
- W. Sierpiński, O pewnem zagadnieniu z rachunku funkcyj asymptotycznych, Prace matematyczno-fizyczne 1 (1906), no. 17, 77–118.
- R. C. Singleton, Algorithm 357: an efficient prime number generator, Comm. ACM 12 (1969), 563–564.
- Jonathan P. Sorenson, Trading time for space in prime number sieves, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 179–195. MR 1726070, DOI 10.1007/BFb0054861
- Jonathan P. Sorenson, The pseudosquares prime sieve, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 193–207. MR 2282925, DOI 10.1007/11792086_{1}5
- Jonathan Sorenson and Ian Parberry, Two fast parallel prime number sieves, Inform. and Comput. 114 (1994), no. 1, 115–130. MR 1294306, DOI 10.1006/inco.1994.1082
- Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes, Math. Comp. 81 (2012), no. 278, 1233–1246. MR 2869058, DOI 10.1090/S0025-5718-2011-02542-1
- I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954. Translated by S. Kravetz. MR 62138
- Georges Voronoi, Sur un problème du calcul des fonctions asymptotiques, J. Reine Angew. Math. 126 (1903), 241–282 (French). MR 1580627, DOI 10.1515/crll.1903.126.241
- K. Walisch, primesieve: fast C/C++ prime number generator, http://primesieve.org. Accessed: 2016-6-21.
Bibliographic Information
- Harald Andrés Helfgott
- Affiliation: Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3-5, D-37073 Göttingen, Germany; and IMJ-PRG, UMR 7586, 58 avenue de France, Bâtiment S. Germain, case 7012, 75013 Paris CEDEX 13, France
- MR Author ID: 644718
- Email: harald.helfgott@gmail.com
- Received by editor(s): April 25, 2018
- Received by editor(s) in revised form: December 3, 2018, and February 22, 2019
- Published electronically: April 23, 2019
- Additional Notes: The author was supported by funds from his Humboldt Professorship.
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 333-350
- MSC (2010): Primary 11Y05, 11Y16; Secondary 11Y11
- DOI: https://doi.org/10.1090/mcom/3438
- MathSciNet review: 4011545