Explicit arithmetic intersection theory and computation of Néron-Tate heights
HTML articles powered by AMS MathViewer
- by Raymond van Bommel, David Holmes and J. Steffen Müller HTML | PDF
- Math. Comp. 89 (2020), 395-410 Request permission
Abstract:
We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over $\mathbb {Q}$, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.References
- Jennifer S. Balakrishnan and Amnon Besser, Computing local $p$-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 11 (2012), 2405–2444. MR 2926986, DOI 10.1093/imrn/rnr111
- Jennifer S. Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885-944.
- Burcu Baran, An exceptional isomorphism between modular curves of level 13, J. Number Theory 145 (2014), 273–300. MR 3253304, DOI 10.1016/j.jnt.2014.05.017
- Burcu Baran, An exceptional isomorphism between level 13 modular curves via Torelli’s theorem, Math. Res. Lett. 21 (2014), no. 5, 919–936. MR 3294556, DOI 10.4310/MRL.2014.v21.n5.a1
- Raymond van Bommel, Numerical verification of the Birch and Swinnerton-Dyer conjecture for hyperelliptic curves of higher genus over $\mathbb {Q}$ up to squares, to appear in Exp. Math., DOI 10.1080/10586458.2019.1592035
- Nils Bruin, Bjorn Poonen, and Michael Stoll, Generalized explicit descent and its application to curves of genus 3, Forum Math. Sigma 4 (2016), Paper No. e6, 80. MR 3482281, DOI 10.1017/fms.2016.1
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- Tim Dokchitser, Models of curves over DVRs, arXiv e-prints (2018), available at 1807.00025.
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI 10.2307/2007043
- E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, DOI 10.1090/S0025-5718-01-01320-5
- E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus $2$ and the infinite descent, Acta Arith. 79 (1997), no. 4, 333–352. MR 1450916, DOI 10.4064/aa-79-4-333-352
- Benedict H. Gross, Local heights on curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 327–339. MR 861983
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445. MR 1890579, DOI 10.1006/jsco.2001.0513
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- David Holmes, Computing Néron-Tate heights of points on hyperelliptic Jacobians, J. Number Theory 132 (2012), no. 6, 1295–1305. MR 2899805, DOI 10.1016/j.jnt.2012.01.002
- David Holmes, An Arakelov-theoretic approach to naïve heights on hyperelliptic Jacobians, New York J. Math. 20 (2014), 927–957. MR 3272917
- Paul Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), no. 1, 23–38. MR 778087, DOI 10.2307/2374455
- Fredrik Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017), no. 8, 1281–1292. MR 3681746, DOI 10.1109/TC.2017.2690633
- V. A. Kolyvagin and D. Yu. Logachëv, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171–196 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1229–1253.
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124, DOI 10.1007/978-1-4612-1031-3
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Pascal Molin and Christian Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp. 88 (2019), no. 316, 847–888. MR 3882287, DOI 10.1090/mcom/3351
- Jan Steffen Müller, Computing canonical heights using arithmetic intersection theory, Math. Comp. 83 (2014), no. 285, 311–336. MR 3120591, DOI 10.1090/S0025-5718-2013-02719-6
- J. Steffen Müller and Michael Stoll, Computing canonical heights on elliptic curves in quasi-linear time, LMS J. Comput. Math. 19 (2016), no. suppl. A, 391–405. MR 3540967, DOI 10.1112/S1461157016000139
- Jan Steffen Müller and Michael Stoll, Canonical heights on genus-2 Jacobians, Algebra Number Theory 10 (2016), no. 10, 2153–2234. MR 3582017, DOI 10.2140/ant.2016.10.2153
- David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 688651, DOI 10.1007/978-1-4899-2843-6
- A. Néron, Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. of Math. (2) 82 (1965), 249–331 (French). MR 179173, DOI 10.2307/1970644
- Christian Neurohr, Efficient integration on Riemann surfaces & applications, PhD thesis, Carl von Ossietzky Universität Oldenburg, 2018. http://oops.uni-oldenburg.de/3607/1/neueff18.pdf.
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149. MR 1740984, DOI 10.2307/121064
- Samir Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), no. 4, 1501–1538. MR 1371352, DOI 10.1216/rmjm/1181072159
- Joseph H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no. 183, 339–358. MR 942161, DOI 10.1090/S0025-5718-1988-0942161-4
- Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182. MR 1914251, DOI 10.4064/aa104-2-6
- Michael Stoll, An explicit theory of heights for hyperelliptic Jacobians of genus three, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, pp. 665–715. MR 3792747
Additional Information
- Raymond van Bommel
- Affiliation: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands
- MR Author ID: 1271408
- Email: raymondvanbommel@gmail.com
- David Holmes
- Affiliation: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands
- MR Author ID: 972881
- ORCID: 0000-0002-6081-2516
- Email: d.s.t.holmes@math.leidenuniv.nl
- J. Steffen Müller
- Affiliation: Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands
- Email: steffen.muller@rug.nl
- Received by editor(s): September 27, 2018
- Received by editor(s) in revised form: February 11, 2019, and February 27, 2019
- Published electronically: May 17, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 395-410
- MSC (2010): Primary 14G40; Secondary 11G30, 11G50, 37P30
- DOI: https://doi.org/10.1090/mcom/3441
- MathSciNet review: 4011549