Segre class computation and practical applications
Authors:
Corey Harris and Martin Helmer
Journal:
Math. Comp. 89 (2020), 465-491
MSC (2010):
Primary 14Qxx, 13Pxx, 13H15, 14C17, 14C20, 68W30, 65H10
DOI:
https://doi.org/10.1090/mcom/3448
Published electronically:
May 24, 2019
MathSciNet review:
4011552
Full-text PDF
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: Let $X \subset Y$ be closed (possibly singular) subschemes of a smooth projective toric variety $T$. We show how to compute the Segre class ${s}(X,Y)$ as a class in the Chow group of $T$. Building on this, we give effective methods to compute intersection products in projective varieties, to determine algebraic multiplicity without working in local rings, and to test pairwise containment of subvarieties of $T$. Our methods may be implemented without using Gröbner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used.
- Paolo Aluffi and Corey Harris, The Euclidean distance degree of smooth complex projective varieties, Algebra Number Theory 12 (2018), no. 8, 2005–2032. MR 3892971, DOI https://doi.org/10.2140/ant.2018.12.2005
- Paolo Aluffi, Computing characteristic classes of projective schemes, J. Symbolic Comput. 35 (2003), no. 1, 3–19. MR 1956868, DOI https://doi.org/10.1016/S0747-7171%2802%2900089-5
- P. Aluffi, The Chern-Schwartz-MacPherson class of an embeddable scheme, arXiv preprint arXiv:1805.11116, 2018.
- D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Bertini: Software for numerical algebraic geometry, available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- David Eklund, Christine Jost, and Chris Peterson, A method to compute Segre classes of subschemes of projective space, J. Algebra Appl. 12 (2013), no. 2, 1250142, 15. MR 3005594, DOI https://doi.org/10.1142/S0219498812501423
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2.
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558
- Corey Harris, Computing Segre classes in arbitrary projective varieties, J. Symbolic Comput. 82 (2017), 26–37. MR 3608229, DOI https://doi.org/10.1016/j.jsc.2016.09.003
- J. D. Hauenstein, M. S. El Din, É. Schost, and T. X. Vu, Solving determinantal systems using homotopy techniques, arXiv preprint arXiv:1802.10409, 2018.
- Martin Helmer, Algorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson class and Segre class of projective varieties, J. Symbolic Comput. 73 (2016), 120–138. MR 3385954, DOI https://doi.org/10.1016/j.jsc.2015.03.007
- Martin Helmer, Computing characteristic classes of subschemes of smooth toric varieties, J. Algebra 476 (2017), 548–582. MR 3608162, DOI https://doi.org/10.1016/j.jalgebra.2016.12.024
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- G. Lecerf, Kronecker: Polynomial equation system solver, software available at http://www.lix.polytechnique.fr/~lecerf/software/kronecker/index.html; http://www.mathemagix.org/www/geomsolvex/doc/html/index.en.html.
- Grégoire Lecerf, Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers, J. Complexity 19 (2003), no. 4, 564–596. MR 1991984, DOI https://doi.org/10.1016/S0885-064X%2803%2900031-1
- Torgunn Karoline Moe and Nikolay Qviller, Segre classes on smooth projective toric varieties, Math. Z. 275 (2013), no. 1-2, 529–548. MR 3101819, DOI https://doi.org/10.1007/s00209-013-1146-9
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- Ragni Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 247–276. MR 510551
- P. Samuel, Méthodes d’algèbre abstraite en géométrie algébrique, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 4, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). MR 0072531
- M. Sayrafi, Computations over local rings in Macaulay2, arXiv preprint arXiv:1710.09830, 2017.
- J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software (TOMS) 25 (1999), no. 2, 251–276,.
Retrieve articles in Mathematics of Computation with MSC (2010): 14Qxx, 13Pxx, 13H15, 14C17, 14C20, 68W30, 65H10
Retrieve articles in all journals with MSC (2010): 14Qxx, 13Pxx, 13H15, 14C17, 14C20, 68W30, 65H10
Additional Information
Corey Harris
Affiliation:
Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norway
Email:
charris@math.uio.no
Martin Helmer
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
Address at time of publication:
Mathematical Sciences Institute, Hanna Neumann Building, Science Road, The Australian National University, Canberra ACT 2601 Australia
MR Author ID:
884722
Email:
martin.helmer2@gmail.com
Received by editor(s):
July 13, 2018
Received by editor(s) in revised form:
February 15, 2019
Published electronically:
May 24, 2019
Additional Notes:
The first author was partially supported by the Bergen Research Foundation project grant “Algebraic and topological cycles in tropical and complex geometry”.
The second author was partially supported by the Independent Research Fund of Denmark during the preparation of this work.
Article copyright:
© Copyright 2019
American Mathematical Society