Euler’s function on products of primes in a fixed arithmetic progression
HTML articles powered by AMS MathViewer
- by Amir Akbary and Forrest J. Francis;
- Math. Comp. 89 (2020), 993-1026
- DOI: https://doi.org/10.1090/mcom/3463
- Published electronically: September 5, 2019
- HTML | PDF | Request permission
Abstract:
We study generalizations of some results of Jean-Louis Nicolas regarding the relation between small values of Euler’s function $\varphi (n)$ and the Riemann Hypothesis. Let $C(q, a)$ be the constant appearing in the asymptotic formula \[ \prod _{\substack {p \leq x \\ p \equiv a\ \text {(mod\ {q})}}} \left (1 - \frac {1}{p}\right ) \sim \frac {C(q, a)}{(\log {x})^\frac {1}{\varphi (q)}},\] as $x\rightarrow \infty$. Among other things, we prove that for $1\leq q\leq 10$ and for $q=12, 14$, the generalized Riemann Hypothesis for the Dedekind zeta function of the cyclotomic field $\mathbb {Q}(e^{2\pi i/q})$ is true if and only if for all integers $k\geq 1$ we have \[ \frac {\overline {N}_k}{\varphi (\overline {N}_k)(\log (\varphi (q)\log {\overline {N}_k}))^{\frac {1}{\varphi (q)}}} > \frac {1}{C(q,1)}.\] Here $\overline {N}_k$ is the product of the first $k$ primes in the arithmetic progression $p\equiv 1\ \text {(mod\ {q})}$. We also prove that, for $q\leq 400,000$ and integers $a$ coprime to $q$, the analogous inequality \[ \frac {\overline {N}_k}{\varphi (\overline {N}_k)(\log (\varphi (q)\log {\overline {N}_k}))^{\frac {1}{\varphi (q)}}} > \frac {1}{C(q,a)}\] holds for infinitely many values of $k$. If in addition $a$ is not a square modulo $q$, then there are infinitely many $k$ for which this inequality holds and also infinitely many $k$ for which this inequality fails.References
- Michael A. Bennett, Greg Martin, Kevin O’Bryant, and Andrew Rechnitzer, Explicit bounds for primes in arithmetic progressions, Illinois J. Math. 62 (2018), no. 1-4, 427–532. MR 3922423, DOI 10.1215/ijm/1552442669
- Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler $\phi$-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), no. 287, 1447–1476. MR 3167466, DOI 10.1090/S0025-5718-2013-02749-4
- A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
- A. Languasco and A. Zaccagnini, A note on Mertens’ formula for arithmetic progressions, J. Number Theory 127 (2007), no. 1, 37–46. MR 2351662, DOI 10.1016/j.jnt.2006.12.015
- A. Languasco and A. Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II. Numerical values, Math. Comp. 78 (2009), no. 265, 315–326. MR 2448709, DOI 10.1090/S0025-5718-08-02148-0
- Alessandro Languasco and Alessandro Zaccagnini, Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions, Experiment. Math. 19 (2010), no. 3, 279–284. With an appendix by Karl K. Norton. MR 2743571, DOI 10.1080/10586458.2010.10390624
- William J. LeVeque, Fundamentals of number theory, Dover Publications, Inc., Mineola, NY, 1996. Reprint of the 1977 original. MR 1382656
- The LMFDB Collaboration, The L-functions and Modular Forms Database, 2017. [Online; accessed 20 October 2017].
- Maple 2017.0, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
- Franz Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46–62 (German). MR 1579612, DOI 10.1515/crll.1874.78.46
- Kevin S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265–285. MR 726004, DOI 10.1090/S0025-5718-1984-0726004-6
- F. Johansson and others, mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18), 2013. http://mpmath.org/.
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- M. Ram Murty, Problems in analytic number theory, Graduate Texts in Mathematics, vol. 206, Springer-Verlag, New York, 2001. Readings in Mathematics. MR 1803093, DOI 10.1007/978-1-4757-3441-6
- Władysław Narkiewicz, The development of prime number theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. From Euclid to Hardy and Littlewood. MR 1756780, DOI 10.1007/978-3-662-13157-2
- Jean-Louis Nicolas, Petites valeurs de la fonction d’Euler, J. Number Theory 17 (1983), no. 3, 375–388 (French, with English summary). MR 724536, DOI 10.1016/0022-314X(83)90055-0
- Jean-Louis Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), no. 3, 311–321. MR 2983456, DOI 10.4064/aa155-3-7
- David J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009–3027. MR 3522979, DOI 10.1090/mcom/3077
- D. J. Platt and O. Ramaré, Explicit estimates: from $\Lambda (n)$ in arithmetic progressions to $\Lambda (n)/n$, Exp. Math. 26 (2017), no. 1, 77–92. MR 3599008, DOI 10.1080/10586458.2015.1123124
- Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397–425. MR 1320898, DOI 10.1090/S0025-5718-96-00669-2
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.3), 2018. http://www.sagemath.org.
- Kenneth S. Williams, Mertens’ theorem for arithmetic progressions, J. Number Theory 6 (1974), 353–359. MR 364137, DOI 10.1016/0022-314X(74)90032-8
Bibliographic Information
- Amir Akbary
- Affiliation: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- MR Author ID: 650700
- Email: amir.akbary@uleth.ca
- Forrest J. Francis
- Affiliation: Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Email: f.francis@student.adfa.edu.au
- Received by editor(s): November 6, 2018
- Received by editor(s) in revised form: April 15, 2019
- Published electronically: September 5, 2019
- Additional Notes: Research of both authors was partially supported by NSERC
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 993-1026
- MSC (2010): Primary 11N37, 11M26, 11N56
- DOI: https://doi.org/10.1090/mcom/3463
- MathSciNet review: 4044459