Post-processed Galerkin approximation of improved order for wave equations
HTML articles powered by AMS MathViewer
- by M. Bause, U. Köcher, F. A. Radu and F. Schieweck;
- Math. Comp. 89 (2020), 595-627
- DOI: https://doi.org/10.1090/mcom/3464
- Published electronically: August 30, 2019
- HTML | PDF | Request permission
Abstract:
We introduce and analyze a post-processing for continuous variational space-time discretizations of wave problems. The post-processing lifts the fully discrete approximation in time from a continuous to a continuously differentiable one. Further, it increases the order of convergence. The discretization in time is based on the Gauss–Lobatto quadrature formula which is essential for ensuring the improved convergence behavior. Error estimates of optimal order in various norms are proved. A bound of superconvergence at the discrete time nodes is included. To show the error estimates, a special approach is developed. First, error estimates for the time derivative of the post-processed solution are proved. In a second step these results are used to show the error estimates for the post-processed solution itself. The need for this approach comes through the structure of the wave equation. Stability properties of its solution preclude us from using absorption arguments for the control of certain error quantities. A further key ingredient of this work is the construction of a time-interpolate of the exact solution that is needed in an essential way. Finally, a conservation of energy property is shown for the post-processed solution which is an important feature for approximation schemes to wave equations. The error estimates are confirmed by numerical experiments.References
- Naveed Ahmed, Simon Becher, and Gunar Matthies, Higher-order discontinuous Galerkin time stepping and local projection stabilization techniques for the transient Stokes problem, Comput. Methods Appl. Mech. Engrg. 313 (2017), 28–52. MR 3577930, DOI 10.1016/j.cma.2016.09.026
- Naveed Ahmed and Gunar Matthies, Numerical studies of higher order variational time stepping schemes for evolutionary Navier-Stokes equations, Boundary and interior layers, computational and asymptotic methods—BAIL 2016, Lect. Notes Comput. Sci. Eng., vol. 120, Springer, Cham, 2017, pp. 19–33. MR 3772488, DOI 10.1007/978-3-319-67202-1_{2}
- N. Ahmed, G. Matthies, L. Tobiska, and H. Xie, Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21-22, 1747–1756. MR 2787534, DOI 10.1016/j.cma.2011.02.003
- M. Ainsworth, P. Monk, and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, J. Sci. Comput. 27 (2006), no. 1-3, 5–40. MR 2285764, DOI 10.1007/s10915-005-9044-x
- Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods, Numer. Math. 114 (2009), no. 1, 133–160. MR 2557872, DOI 10.1007/s00211-009-0254-2
- Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence, Numer. Math. 118 (2011), no. 3, 429–456. MR 2810802, DOI 10.1007/s00211-011-0363-6
- A. K. Aziz and Peter Monk, Continuous finite elements in space and time for the heat equation, Math. Comp. 52 (1989), no. 186, 255–274. MR 983310, DOI 10.1090/S0025-5718-1989-0983310-2
- L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl. 27 (1994), no. 3, 91–102. MR 1255008, DOI 10.1016/0898-1221(94)90048-5
- W. Bangerth, T. Heister, and G. Kanschat, deal.II, Differential equations analysis library, Technical Reference, http://www.dealii.org, 2013.
- W. Bangerth, M. Geiger, and R. Rannacher, Adaptive Galerkin finite element methods for the wave equation, Comput. Methods Appl. Math. 10 (2010), no. 1, 3–48. MR 2662874, DOI 10.2478/cmam-2010-0001
- Wolfgang Bangerth and Rolf Rannacher, Adaptive finite element methods for differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003. MR 1960405, DOI 10.1007/978-3-0348-7605-6
- J. D. De Basabe, M. K. Sen, and M. F. Wheeler, The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion, Geophys. J. Int., 175 (2008), pp. 83–95.
- Markus Bause and Uwe Köcher, Variational time discretization for mixed finite element approximations of nonstationary diffusion problems, J. Comput. Appl. Math. 289 (2015), 208–224. MR 3350771, DOI 10.1016/j.cam.2015.02.015
- M. Bause, F. A. Radu, and U. Köcher, Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg. 320 (2017), 745–768. MR 3646372, DOI 10.1016/j.cma.2017.03.017
- Markus Bause, Florin A. Radu, and Uwe Köcher, Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space, Numer. Math. 137 (2017), no. 4, 773–818. MR 3719044, DOI 10.1007/s00211-017-0894-6
- Leszek F. Demkowicz and Jay Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, Recent developments in discontinuous Galerkin finite element methods for partial differential equations, IMA Vol. Math. Appl., vol. 157, Springer, Cham, 2014, pp. 149–180. MR 3203995, DOI 10.1007/978-3-319-01818-8_{6}
- Willy Dörfler, Stefan Findeisen, and Christian Wieners, Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems, Comput. Methods Appl. Math. 16 (2016), no. 3, 409–428. MR 3518361, DOI 10.1515/cmam-2016-0015
- M. Dumbser, M. Käser, and E. F. Toro, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p-adaptivity, Geophys. J. Int., 171 (2007), pp. 695–717.
- Alexandre Ern and Friedhelm Schieweck, Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs, Math. Comp. 85 (2016), no. 301, 2099–2129. MR 3511276, DOI 10.1090/mcom/3073
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- S. M. Findeisen, A Parallel and Adaptive Space-Time Method for Maxwell’s Equations, Ph.D. Thesis, DOI: 10.5445/IR/1000056876, KIT, Karlruhe, 2016.
- Donald A. French and Todd E. Peterson, A continuous space-time finite element method for the wave equation, Math. Comp. 65 (1996), no. 214, 491–506. MR 1325867, DOI 10.1090/S0025-5718-96-00685-0
- Marcus J. Grote, Anna Schneebeli, and Dominik Schötzau, Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal. 44 (2006), no. 6, 2408–2431. MR 2272600, DOI 10.1137/05063194X
- Marcus J. Grote and Dominik Schötzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, J. Sci. Comput. 40 (2009), no. 1-3, 257–272. MR 2511734, DOI 10.1007/s10915-008-9247-z
- Jan S. Hesthaven and Tim Warburton, Nodal discontinuous Galerkin methods, Texts in Applied Mathematics, vol. 54, Springer, New York, 2008. Algorithms, analysis, and applications. MR 2372235, DOI 10.1007/978-0-387-72067-8
- Thomas J. R. Hughes and Gregory M. Hulbert, Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Engrg. 66 (1988), no. 3, 339–363. MR 928689, DOI 10.1016/0045-7825(88)90006-0
- S. Hussain, F. Schieweck, and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Numer. Math. 19 (2011), no. 1, 41–61. MR 2805871, DOI 10.1515/JNUM.2011.003
- S. Hussain, F. Schieweck, and S. Turek, A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, Open Numer. Methods J. 4 (2012), 35–45. MR 3005359, DOI 10.2174/1876389801204010035
- S. Hussain, F. Schieweck, and S. Turek, An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Internat. J. Numer. Methods Fluids 73 (2013), no. 11, 927–952. MR 3129187, DOI 10.1002/fld.3831
- Claes Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 117–129. MR 1241479, DOI 10.1016/0045-7825(93)90170-3
- Ohannes Karakashian and Charalambos Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations, Math. Comp. 74 (2005), no. 249, 85–102. MR 2085403, DOI 10.1090/S0025-5718-04-01654-0
- Andreas Kirsch and Frank Hettlich, The mathematical theory of time-harmonic Maxwell’s equations, Applied Mathematical Sciences, vol. 190, Springer, Cham, 2015. Expansion-, integral-, and variational methods. MR 3288313, DOI 10.1007/978-3-319-11086-8
- Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1983 original. MR 1262126
- Andro Mikelić and Mary F. Wheeler, Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system, J. Math. Phys. 53 (2012), no. 12, 123702, 15. MR 3405922, DOI 10.1063/1.4764887
- G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations, Preprint No. 23/2011, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 2011.
- Uwe Köcher and Markus Bause, Variational space-time methods for the wave equation, J. Sci. Comput. 61 (2014), no. 2, 424–453. MR 3265256, DOI 10.1007/s10915-014-9831-3
- U. Köcher, Variational space-time methods for the elastic wave equation and the diffusion equation, Ph.D. Thesis, Helmut-Schmidt-Universität, http://edoc.sub.uni-hamburg.de/hsu/volltexte/2015/3112/, 2015.
- U. Köcher, Influence of the SIPG penalisation on the numerical properties of linear systems for elastic wave propagation, in F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., vol. 126, Springer, Cham, 2019, pp. 215–223.
- J.-L. Lions, Optimal control of systems governed by partial differential equations, Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. Translated from the French by S. K. Mitter. MR 271512
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Charalambos Makridakis and Ricardo H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math. 104 (2006), no. 4, 489–514. MR 2249675, DOI 10.1007/s00211-006-0013-6
- Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. MR 1299729
- Thomas Richter, Fluid-structure interactions, Lecture Notes in Computational Science and Engineering, vol. 118, Springer, Cham, 2017. Models, analysis and finite elements. MR 3709400, DOI 10.1007/978-3-319-63970-3
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
Bibliographic Information
- M. Bause
- Affiliation: Faculty of Mechanical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
- MR Author ID: 667155
- Email: bause@hsu-hh.de
- U. Köcher
- Affiliation: Faculty of Mechanical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
- Email: koecher@hsu-hh.de
- F. A. Radu
- Affiliation: Department of Mathematics, University of Bergen, Allégaten 41, 50520 Bergen, Norway
- MR Author ID: 740659
- Email: florin.radu@uib.no
- F. Schieweck
- Affiliation: Faculty of Mathematics, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- MR Author ID: 155960
- Email: schiewec@ovgu.de
- Received by editor(s): March 7, 2018
- Received by editor(s) in revised form: December 10, 2018
- Published electronically: August 30, 2019
- Additional Notes: The first author is the corresponding author.
This work was supported by the German Academic Exchange Service (DAAD) under the grant ID 57238185, by the Research Council of Norway under the grant ID 255510, and the Toppforsk projekt under the grant ID 250223. - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 595-627
- MSC (2010): Primary 65M60, 65M12; Secondary 35L05
- DOI: https://doi.org/10.1090/mcom/3464
- MathSciNet review: 4044443