Growth of torsion groups of elliptic curves upon base change
HTML articles powered by AMS MathViewer
- by Enrique González–Jiménez and Filip Najman;
- Math. Comp. 89 (2020), 1457-1485
- DOI: https://doi.org/10.1090/mcom/3478
- Published electronically: October 28, 2019
- HTML | PDF | Request permission
Abstract:
We study how the torsion of elliptic curves over number fields grows upon base change, and in particular prove various necessary conditions for torsion growth. For a number field $F$, we show that for a large set of number fields $L$, whose Galois group of their normal closure over $F$ has certain properties, it will hold that $E(L)_{\operatorname {tors}}=E(F)_{\operatorname {tors}}$ for all elliptic curves $E$ defined over $F$.
Our methods turn out to be particularly useful in studying the possible torsion groups $E(K)_{\operatorname {tors}}$, where $K$ is a number field and $E$ is a base change of an elliptic curve defined over $\mathbb {Q}$. Suppose that $E$ is a base change of an elliptic curve over $\mathbb {Q}$ for the remainder of the abstract. We prove that $E(K)_{\operatorname {tors}}=E(\mathbb {Q})_{\operatorname {tors}}$ for all elliptic curves $E$ defined over $\mathbb {Q}$ and all number fields $K$ of degree $d$, where $d$ is not divisible by a prime $\leq 7$. Using this fact, we determine all the possible torsion groups $E(K)_{\operatorname {tors}}$ over number fields $K$ of prime degree $p\geq 7$. We determine all the possible degrees of $[\mathbb {Q}(P):\mathbb {Q}]$, where $P$ is a point of prime order $p$ for all $p$ such that $p\not \equiv 8 \pmod 9$ or $\left ( \frac {-D}{p}\right )=1$ for any $D\in \{1,2,7,11,19,43,67,163\}$; this is true for a set of density $\frac {1535}{1536}$ of all primes and in particular for all $p<3167$. Using this result, we determine all the possible prime orders of a point $P\in E(K)_{\operatorname {tors}}$, where $[K:\mathbb {Q}]=d$ for all $d\leq 3342296$. Finally, we determine all the possible groups $E(K)_{\operatorname {tors}}$, where $K$ is a quartic number field and $E$ is an elliptic curve defined over $\mathbb {Q}$ and show that no quartic sporadic point on a modular curve $X_1(m,n)$ comes from an elliptic curve defined over $\mathbb {Q}$.
References
- Peter Bruin and Filip Najman, A criterion to rule out torsion groups for elliptic curves over number fields, Res. Number Theory 2 (2016), Paper No. 3, 13. MR 3501016, DOI 10.1007/s40993-015-0031-5
- Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885–944. MR 3961086, DOI 10.4007/annals.2019.189.3.6
- Yuri Bilu and Pierre Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2) 173 (2011), no. 1, 569–584. MR 2753610, DOI 10.4007/annals.2011.173.1.13
- Yuri Bilu, Pierre Parent, and Marusia Rebolledo, Rational points on $X^+_0(p^r)$, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 3, 957–984 (English, with English and French summaries). MR 3137477, DOI 10.5802/aif.2781
- W. Bosma, J. J. Cannon, C. Fieker, and A. Steel (eds.), Handbook of Magma Functions, Edition 2.21 (2015).
- Abbey Bourdon, Pete L. Clark, and James Stankewicz, Torsion points on CM elliptic curves over real number fields, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8457–8496. MR 3710632, DOI 10.1090/tran/6905
- Michael Chou, Torsion of rational elliptic curves over quartic Galois number fields, J. Number Theory 160 (2016), 603–628. MR 3425225, DOI 10.1016/j.jnt.2015.09.013
- Pete L. Clark, Patrick Corn, Alex Rice, and James Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), no. 1, 509–535. MR 3356044, DOI 10.1112/S1461157014000072
- Maarten Derickx and Mark van Hoeij, Gonality of the modular curve $X_1(N)$, J. Algebra 417 (2014), 52–71. MR 3244637, DOI 10.1016/j.jalgebra.2014.06.026
- Maarten Derickx and Andrew V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4233–4245. MR 3690609, DOI 10.1090/proc/13605
- Enrique González-Jiménez, Complete classification of the torsion structures of rational elliptic curves over quintic number fields, J. Algebra 478 (2017), 484–505. MR 3621686, DOI 10.1016/j.jalgebra.2017.01.012
- Enrique González-Jiménez and Álvaro Lozano-Robledo, On the minimal degree of definition of $p$-primary torsion subgroups of elliptic curves, Math. Res. Lett. 24 (2017), no. 4, 1067–1096. MR 3723804, DOI 10.4310/MRL.2017.v24.n4.a7
- Enrique González-Jiménez and Álvaro Lozano-Robledo, On the torsion of rational elliptic curves over quartic fields, Math. Comp. 87 (2018), no. 311, 1457–1478. MR 3766394, DOI 10.1090/mcom/3235
- E. González-Jiménez and F. Najman, Magma scripts and electronic transcript of computations for the paper, Growth of torsion groups of elliptic curves upon base change, http://matematicas.uam.es/~enrique.gonzalez.jimenez
- Enrique González-Jiménez, Filip Najman, and José M. Tornero, Torsion of rational elliptic curves over cubic fields, Rocky Mountain J. Math. 46 (2016), no. 6, 1899–1917. MR 3591265, DOI 10.1216/RMJ-2016-46-6-1899
- Enrique González-Jiménez and José M. Tornero, Torsion of rational elliptic curves over quadratic fields II, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110 (2016), no. 1, 121–143. MR 3462078, DOI 10.1007/s13398-015-0223-9
- Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291–301. MR 2069117, DOI 10.4064/aa113-3-6
- Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1–12. MR 2254548, DOI 10.1112/S0024610706022940
- Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Infinite families of elliptic curves over dihedral quartic number fields, J. Number Theory 133 (2013), no. 1, 115–122. MR 2981403, DOI 10.1016/j.jnt.2012.06.014
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229. MR 1172689, DOI 10.1007/BF01232025
- M. A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 21–23. MR 510395, DOI 10.1017/S0305004100055444
- M. A. Kenku, The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 15–20. MR 549292, DOI 10.1017/S0305004100056462
- M. A. Kenku, The modular curve $X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2) 22 (1980), no. 2, 239–244. MR 588271, DOI 10.1112/jlms/s2-22.2.239
- M. A. Kenku, On the modular curves $X_{0}(125)$, $X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), no. 3, 415–427. MR 616546, DOI 10.1112/jlms/s2-23.3.415
- M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149. MR 931956, DOI 10.1017/S0027763000002816
- Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. MR 434947, DOI 10.1112/plms/s3-33.2.193
- The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org
- Álvaro Lozano-Robledo, On the field of definition of $p$-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), no. 1, 279–305. MR 3084348, DOI 10.1007/s00208-013-0906-5
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245–272. MR 3512885, DOI 10.4310/MRL.2016.v23.n1.a12
- Jeremy Rouse and David Zureick-Brown, Elliptic curves over $\Bbb Q$ and 2-adic images of Galois, Res. Number Theory 1 (2015), Paper No. 12, 34. MR 3500996, DOI 10.1007/s40993-015-0013-7
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), Paper No. e4, 79. MR 3482279, DOI 10.1017/fms.2015.33
- D. Zywina, On the possible images of the mod $\ell$ representations associated to elliptic curves over $\mathbb {Q}$, arXiv:1508.07660.
Bibliographic Information
- Enrique González–Jiménez
- Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
- MR Author ID: 703386
- Email: enrique.gonzalez.jimenez@uam.es
- Filip Najman
- Affiliation: Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
- MR Author ID: 886852
- Email: fnajman@math.hr
- Received by editor(s): February 1, 2019
- Received by editor(s) in revised form: May 22, 2019, and June 6, 2019
- Published electronically: October 28, 2019
- Additional Notes: The first author was partially supported by the grant MTM2015–68524–P
The second author gratefully acknowledges support from the QuantiXLie Center of Excellence and by the Croatian Science Foundation under the project no. IP-2018-01-1313. - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1457-1485
- MSC (2010): Primary 11G05
- DOI: https://doi.org/10.1090/mcom/3478
- MathSciNet review: 4063324