Computing isogenies between Jacobians of curves of genus 2 and 3
HTML articles powered by AMS MathViewer
- by Enea Milio;
- Math. Comp. 89 (2020), 1331-1364
- DOI: https://doi.org/10.1090/mcom/3486
- Published electronically: October 28, 2019
- HTML | PDF | Request permission
Abstract:
We present a quasi-linear algorithm to compute (separable) isogenies of degree $\ell ^g$, for $\ell$ an odd prime number, between Jacobians of curves of genus $g=2$ and $3$ starting from the equation of the curve $\mathcal {C}$ and a maximal isotropic subgroup $\mathcal {V}$ of the $\ell$-torsion, generalizing Vélu’s formula from genus $1$. Denoting by $J_{\mathcal {C}}$ the Jacobian of $\mathcal {C}$, the isogeny is $J_{\mathcal {C}}\to J_{\mathcal {C}}/\mathcal {V}$. Thus $\mathcal {V}$ is the kernel of the isogeny and we compute only isogenies with such kernels. This work is based on the paper Computing functions on Jacobians and their quotients of Jean-Marc Couveignes and Tony Ezome. We improve their genus $2$ algorithm, generalize it to genus $3$ hyperelliptic curves, and introduce a way to deal with the genus $3$ nonhyperelliptic case, using algebraic theta functions.References
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673, DOI 10.1007/978-3-662-06307-1
- G. Bisson, R. Cosset, and D. Robert. AVIsogenies (Abelian Varieties and Isogenies). Magma package for explicit isogenies computation between abelian varieties. http://avisogenies.gforge.inria.fr/, 2010.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- A. Bostan, F. Morain, B. Salvy, and É. Schost, Fast algorithms for computing isogenies between elliptic curves, Math. Comp. 77 (2008), no. 263, 1755–1778. MR 2398793, DOI 10.1090/S0025-5718-08-02066-8
- L. Brambila-Paz, S.B. Bradlow, O. Garca-Prada, and S. Ramanan. Moduli Spaces and Vector Bundles, volume 359 of London Mathematical Society Lecture Note Series. Cambridge University Press, 2009.
- Lucia Caporaso and Edoardo Sernesi, Recovering plane curves from their bitangents, J. Algebraic Geom. 12 (2003), no. 2, 225–244. MR 1949642, DOI 10.1090/S1056-3911-02-00307-7
- J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus $2$, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, Cambridge, 1996. MR 1406090, DOI 10.1017/CBO9780511526084
- R. Cosset, Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques, PhD thesis, Université Henri Poincaré - Nancy 1, 2011.
- Romain Cosset and Damien Robert, Computing $(\ell ,\ell )$-isogenies in polynomial time on Jacobians of genus $2$ curves, Math. Comp. 84 (2015), no. 294, 1953–1975. MR 3335899, DOI 10.1090/S0025-5718-2014-02899-8
- Jean-Marc Couveignes and Tony Ezome, Computing functions on Jacobians and their quotients, LMS J. Comput. Math. 18 (2015), no. 1, 555–577. MR 3389883, DOI 10.1112/S1461157015000169
- C. Diem, On arithmetic and the discrete logarithm problem in class groups of curves, 2008.
- I. Dolgachev and D. Lehavi, On isogenous principally polarized abelian surfaces, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 51–69. MR 2457735, DOI 10.1090/conm/465/09100
- A. Fiorentino, Weber’s formula for the bitangents of a smooth plane quartic, arXiv:1612.02049, 2016.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Jun-ichi Igusa, Theta functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972. MR 325625
- George R. Kempf, Linear systems on abelian varieties, Amer. J. Math. 111 (1989), no. 1, 65–94. MR 980300, DOI 10.2307/2374480
- Shoji Koizumi, Theta relations and projective normality of Abelian varieties, Amer. J. Math. 98 (1976), no. 4, 865–889. MR 480543, DOI 10.2307/2374034
- Serge Lang, Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, No. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. MR 106225
- David Lehavi, Any smooth plane quartic can be reconstructed from its bitangents, Israel J. Math. 146 (2005), 371–379. MR 2151609, DOI 10.1007/BF02773542
- D. Lehavi and C. Ritzenthaler, An explicit formula for the arithmetic-geometric mean in genus 3, Experiment. Math. 16 (2007), no. 4, 421–440. MR 2378484
- David Lubicz and Damien Robert, Computing isogenies between abelian varieties, Compos. Math. 148 (2012), no. 5, 1483–1515. MR 2982438, DOI 10.1112/S0010437X12000243
- David Lubicz and Damien Robert, Computing separable isogenies in quasi-optimal time, LMS J. Comput. Math. 18 (2015), no. 1, 198–216. MR 3349315, DOI 10.1112/S146115701400045X
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- D. Mumford, On the equations defining abelian varieties. II, Invent. Math. 3 (1967), 75–135. MR 219541, DOI 10.1007/BF01389741
- D. Mumford, On the equations defining abelian varieties. III, Invent. Math. 3 (1967), 215–244. MR 219542, DOI 10.1007/BF01425401
- D. Mumford. Tata lectures on theta I, volume 28 of Progress in Mathematics. Birkhäuser Boston, 1983.
- D. Mumford. Tata lectures on theta II, volume 43 of Progress in Mathematics. Birkhäuser Boston, 1984.
- J. Steffen Müller, Explicit Kummer varieties of hyperelliptic Jacobian threefolds, LMS J. Comput. Math. 17 (2014), no. 1, 496–508. MR 3356043, DOI 10.1112/S1461157014000126
- Sevin Recillas, Jacobians of curves with $g^{1}_{4}$’s are the Prym’s of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 1, 9–13. MR 480505
- B. Riemann, Sur la Théorie des Fonctions Abéliennes, Oeuvres de Riemann, second edition, p. 487, 1898.
- Christophe Ritzenthaler, Point counting on genus 3 non hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 379–394. MR 2138009, DOI 10.1007/978-3-540-24847-7_{2}9
- C. Ritzenthaler, Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis, PhD thesis, Université Paris 7 – Denis Diderot, June 2003.
- D. Robert, Fonctions thêta et applications à la cryptographie, PhD thesis, Université Henri Poincaré – Nancy 1, 2010.
- Benjamin Smith, Isogenies and the discrete logarithm problem in Jacobians and genus 3 hyperelliptic curves, Advances in cryptology—EUROCRYPT 2008, Lecture Notes in Comput. Sci., vol. 4965, Springer, Berlin, 2008, pp. 163–180. MR 2606332, DOI 10.1007/978-3-540-78967-3_{1}0
- Benjamin Smith, Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi method, Arithmetic, geometry, cryptography and coding theory, Contemp. Math., vol. 574, Amer. Math. Soc., Providence, RI, 2012, pp. 159–170. MR 2961408, DOI 10.1090/conm/574/11418
- Michael Stoll, An explicit theory of heights for hyperelliptic Jacobians of genus three, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, pp. 665–715. MR 3792747
- A. G. J. Stubbs, Hyperelliptic curves, PhD thesis, University of Liverpool, 2000.
- J. Vélu, Isogénies Entre Courbes Elliptiques, Compte Rendu Académie Sciences Paris Série A-B, 273:A238–A241, 1971.
- H. Weber, Theorie der Abelschen Funktionen vom Geschlecht 3, Berlin : Druck und Verlag von Georg Reimer, 1876.
- A. Weng, Konstruktion kryptographisch geeigneter Kurven mit komplexer Multiplikation, PhD thesis, Universität GH Essen, 2001.
Bibliographic Information
- Enea Milio
- Affiliation: chemin des Peupliers 4, 1028 Préverenges, Switzerland
- MR Author ID: 1129392
- Email: enea.milio@gmail.com
- Received by editor(s): October 9, 2018
- Received by editor(s) in revised form: July 20, 2019, and August 7, 2019
- Published electronically: October 28, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1331-1364
- MSC (2010): Primary 14K02, 14K25, 14Q05, 14Q20
- DOI: https://doi.org/10.1090/mcom/3486
- MathSciNet review: 4063320