Stability of semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed
HTML articles powered by AMS MathViewer
- by Roberto Ferretti and Michel Mehrenberger;
- Math. Comp. 89 (2020), 1783-1805
- DOI: https://doi.org/10.1090/mcom/3494
- Published electronically: December 16, 2019
- HTML | PDF | Request permission
Abstract:
The equivalence between semi-Lagrangian and Lagrange–Galerkin schemes has been proved by R. Ferretti [J. Comp. Math. 28 (2010), no. 4, 461–473], [Numerische Mathematik 124 (2012), no. 1, 31–56] for the case of centered Lagrange interpolation of odd degree $p\le 13$. We generalize this result to an arbitrary odd degree, for both the case of constant- and variable-coefficient equations. In addition, we prove that the same holds for spline interpolations.References
- A. Aldroubi, M. Unser, and M. Eden, Cardinal spline filters: Stability and convergence to the ideal sinc interpolator, Signal Processing 28 (1992), no. 2, 127–138.
- Nicolas Besse and Michel Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system, Math. Comp. 77 (2008), no. 261, 93–123. MR 2353945, DOI 10.1090/S0025-5718-07-01912-6
- F. Boyer, Lecture notes (in french): Aspects théoriques et numériques de l’équation de transport, Aix-Marseille University, June 2014, https://www.math.univ-toulouse.fr/\textasciitilde fboyer/\_media/enseignements/cours\_transport\_fboyer.pdf.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062
- L. Demanet, Lecture notes for course 18.330 – Introduction to Numerical Analysis, MIT Open Courseware, http://ocw.mit.edu.
- NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.18 of 2018-03-27, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- Jim Douglas Jr. and Thomas F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), no. 5, 871–885. MR 672564, DOI 10.1137/0719063
- Maurizio Falcone and Roberto Ferretti, Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. MR 3341715
- Roberto Ferretti, Equivalence of semi-Lagrangian and Lagrange-Galerkin schemes under constant advection speed, J. Comput. Math. 28 (2010), no. 4, 461–473. MR 2675554, DOI 10.4208/jcm.1003-m0012
- R. Ferretti, On the relationship between Semi-Lagrangian and Lagrange–Galerkin schemes, Numerische Mathematik 124 (2012), no. 1, 31–56.
- Roberto Ferretti, Stability of some generalized Godunov schemes with linear high-order reconstructions, J. Sci. Comput. 57 (2013), no. 1, 213–228. MR 3095297, DOI 10.1007/s10915-013-9701-4
- Guillaume Latu, Michel Mehrenberger, Yaman Güçlü, Maurizio Ottaviani, and Eric Sonnendrücker, Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations, J. Sci. Comput. 74 (2018), no. 3, 1601–1650. MR 3767821, DOI 10.1007/s10915-017-0509-5
- K. W. Morton, A. Priestley, and E. Süli, Stability of the Lagrange-Galerkin method with nonexact integration, RAIRO Modél. Math. Anal. Numér. 22 (1988), no. 4, 625–653 (English, with French summary). MR 974291, DOI 10.1051/m2an/1988220406251
- A. Papoulis, Signal Analysis, vol. 191, McGraw-Hill New York, 1977.
- O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math. 38 (1981/82), no. 3, 309–332. MR 654100, DOI 10.1007/BF01396435
- A. Staniforth and J. Côté, Semi-Lagrangian integration schemes for atmospheric models-a review., Monthly Weather Review 119 (1991), 2206–2223.
- Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 1776072, DOI 10.1137/1.9780898719598
- M. Unser, A. Aldroubi, and M. Eden, B-spline signal processing. I. Theory, IEEE transactions on signal processing 41 (1993), no. 2, 821–833.
Bibliographic Information
- Roberto Ferretti
- Affiliation: Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
- MR Author ID: 272089
- Email: ferretti@mat.uniroma3.it
- Michel Mehrenberger
- Affiliation: Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
- MR Author ID: 736186
- Email: michel.mehrenberger@univ-amu.fr
- Received by editor(s): July 23, 2018
- Received by editor(s) in revised form: February 13, 2019, July 2, 2019, and October 1, 2019
- Published electronically: December 16, 2019
- Additional Notes: The first author has been partially supported by IRMA Strasbourg and INdAM–GNCS project “Metodi numerici per equazioni iperboliche e cinetiche e applicazioni”.
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1783-1805
- MSC (2010): Primary 65M12, 65M50, 65M25
- DOI: https://doi.org/10.1090/mcom/3494
- MathSciNet review: 4081918