Nonconforming Virtual Element Method for $2m$th Order Partial Differential Equations in $\mathbb {R}^n$
HTML articles powered by AMS MathViewer
- by Long Chen and Xuehai Huang;
- Math. Comp. 89 (2020), 1711-1744
- DOI: https://doi.org/10.1090/mcom/3498
- Published electronically: December 26, 2019
- HTML | PDF | Request permission
Abstract:
A unified construction of the $H^m$-nonconforming virtual elements of any order $k$ is developed on any shape of polytope in $\mathbb {R}^n$ with constraints $m\leq n$ and $k\geq m$. As a vital tool in the construction, a generalized Green’s identity for $H^m$ inner product is derived. The $H^m$-nonconforming virtual element methods are then used to approximate solutions of the $m$-harmonic equation. After establishing a bound on the jump related to the weak continuity, the optimal error estimate of the canonical interpolation, and the norm equivalence of the stabilization term, the optimal error estimates are derived for the $H^m$-nonconforming virtual element methods.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013), no. 3, 376–391. MR 3073346, DOI 10.1016/j.camwa.2013.05.015
- Peter Alfeld and Maritza Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp. 57 (1991), no. 195, 299–308. MR 1079007, DOI 10.1090/S0025-5718-1991-1079007-2
- P. F. Antonietti, G. Manzini, and M. Verani, The fully nonconforming virtual element method for biharmonic problems, Math. Models Methods Appl. Sci. 28 (2018), no. 2, 387–407. MR 3741104, DOI 10.1142/S0218202518500100
- P. F. Antonietti, G. Manzini, and M. Verani, The conforming virtual element method for polyharmonic problems, Comput. Math. Appl., 2019. https://doi.org/10.1016/j.camwa.2019.09.022.
- J. Argyris, I. Fried, and D. Scharpf, The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal of the Royal Aeronautical Society 72 (1968), 701–709.
- Blanca Ayuso de Dios, Konstantin Lipnikov, and Gianmarco Manzini, The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 879–904. MR 3507277, DOI 10.1051/m2an/2015090
- I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1971), 322–333.
- L. Beirão da Veiga, A. Chernov, L. Mascotto, and A. Russo, Exponential convergence of the $hp$ virtual element method in presence of corner singularities, Numer. Math. 138 (2018), no. 3, 581–613. MR 3767695, DOI 10.1007/s00211-017-0921-7
- L. Beirão da Veiga, F. Dassi, and A. Russo, High-order virtual element method on polyhedral meshes, Comput. Math. Appl. 74 (2017), no. 5, 1110–1122. MR 3689939, DOI 10.1016/j.camwa.2017.03.021
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199–214. MR 2997471, DOI 10.1142/S0218202512500492
- L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (2014), no. 8, 1541–1573. MR 3200242, DOI 10.1142/S021820251440003X
- Lourenço Beirão da Veiga, Carlo Lovadina, and Alessandro Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27 (2017), no. 13, 2557–2594. MR 3714637, DOI 10.1142/S021820251750052X
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Susanne C. Brenner and Li-Yeng Sung, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci. 28 (2018), no. 7, 1291–1336. MR 3815658, DOI 10.1142/S0218202518500355
- Franco Brezzi, Annalisa Buffa, and Konstantin Lipnikov, Mimetic finite differences for elliptic problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 277–295. MR 2512497, DOI 10.1051/m2an:2008046
- Franco Brezzi and L. Donatella Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013), 455–462. MR 3002804, DOI 10.1016/j.cma.2012.09.012
- Shuhao Cao and Long Chen, Anisotropic error estimates of the linear virtual element method on polygonal meshes, SIAM J. Numer. Anal. 56 (2018), no. 5, 2913–2939. MR 3857893, DOI 10.1137/17M1154369
- Shuhao Cao and Long Chen, Anisotropic error estimates of the linear nonconforming virtual element methods, SIAM J. Numer. Anal. 57 (2019), no. 3, 1058–1081. MR 3948241, DOI 10.1137/18M1196455
- Long Chen and Jianguo Huang, Some error analysis on virtual element methods, Calcolo 55 (2018), no. 1, Paper No. 5, 23. MR 3760899, DOI 10.1007/s10092-018-0249-4
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- F. Dassi and L. Mascotto, Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl. 75 (2018), no. 9, 3379–3401. MR 3785566, DOI 10.1016/j.camwa.2018.02.005
- Kang Feng and Zhong-Ci Shi, Mathematical theory of elastic structures, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1996. Translated from the 1981 Chinese original; Revised by the authors. MR 1392473
- Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. MR 2667016, DOI 10.1007/978-3-642-12245-3
- Jun Hu, Yunqing Huang, and Shangyou Zhang, The lowest order differentiable finite element on rectangular grids, SIAM J. Numer. Anal. 49 (2011), no. 4, 1350–1368. MR 2817542, DOI 10.1137/100806497
- Jun Hu, Zhongci Shi, and Jinchao Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math. 121 (2012), no. 4, 731–752. MR 2945614, DOI 10.1007/s00211-012-0445-0
- Jun Hu and Shangyou Zhang, The minimal conforming $H^k$ finite element spaces on $R^n$ rectangular grids, Math. Comp. 84 (2015), no. 292, 563–579. MR 3290955, DOI 10.1090/S0025-5718-2014-02871-8
- Jun Hu and Shangyou Zhang, A canonical construction of $H^m$-nonconforming triangular finite elements, Ann. Appl. Math. 33 (2017), no. 3, 266–288. MR 3821070
- Jianguo Huang and Xuehai Huang, A hybridizable discontinuous Galerkin method for Kirchhoff plates, J. Sci. Comput. 78 (2019), no. 1, 290–320. MR 3902886, DOI 10.1007/s10915-018-0780-0
- Xin Liu, Jian Li, and Zhangxin Chen, A nonconforming virtual element method for the Stokes problem on general meshes, Comput. Methods Appl. Mech. Engrg. 320 (2017), 694–711. MR 3646370, DOI 10.1016/j.cma.2017.03.027
- Lorenzo Mascotto, Ill-conditioning in the virtual element method: stabilizations and bases, Numer. Methods Partial Differential Equations 34 (2018), no. 4, 1258–1281. MR 3798428, DOI 10.1002/num.22257
- J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, New York, second edition, 2006.
- Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283–296. MR 275014, DOI 10.1007/BF02165119
- Ming Wang and Jinchao Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math. 103 (2006), no. 1, 155–169. MR 2207619, DOI 10.1007/s00211-005-0662-x
- Ming Wang and Jinchao Xu, Minimal finite element spaces for $2m$-th-order partial differential equations in $R^n$, Math. Comp. 82 (2013), no. 281, 25–43. MR 2983014, DOI 10.1090/S0025-5718-2012-02611-1
- Yanqiu Wang, A nonconforming Crouzeix-Raviart type finite element on polygonal meshes, Math. Comp. 88 (2019), no. 315, 237–271. MR 3854057, DOI 10.1090/mcom/3334
- S. Wu and J. Xu, $\mathcal P_m$ interior penalty nonconforming finite element methods for $2m$-th order PDEs in $R^n$, arXiv:1710.07678, 2017.
- Shuonan Wu and Jinchao Xu, Nonconforming finite element spaces for $2m$th order partial differential equations on $\Bbb {R}^n$ simplicial grids when $m=n+1$, Math. Comp. 88 (2019), no. 316, 531–551. MR 3882275, DOI 10.1090/mcom/3361
- Shangyou Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids, Appl. Numer. Math. 59 (2009), no. 1, 219–233. MR 2474112, DOI 10.1016/j.apnum.2008.02.002
- Shangyou Zhang, On the full $C_1$-$Q_k$ finite element spaces on rectangles and cuboids, Adv. Appl. Math. Mech. 2 (2010), no. 6, 701–721. MR 2719052, DOI 10.4208/aamm.09-m0993
- Jikun Zhao, Shaochun Chen, and Bei Zhang, The nonconforming virtual element method for plate bending problems, Math. Models Methods Appl. Sci. 26 (2016), no. 9, 1671–1687. MR 3529253, DOI 10.1142/S021820251650041X
- Jikun Zhao, Bei Zhang, Shaochun Chen, and Shipeng Mao, The Morley-type virtual element for plate bending problems, J. Sci. Comput. 76 (2018), no. 1, 610–629. MR 3812981, DOI 10.1007/s10915-017-0632-3
Bibliographic Information
- Long Chen
- Affiliation: Department of Mathematics, University of California at Irvine, Irvine, California 92697
- MR Author ID: 735779
- Email: chenlong@math.uci.edu
- Xuehai Huang
- Affiliation: School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, People’s Republic of China
- MR Author ID: 854280
- Email: huang.xuehai@sufe.edu.cn
- Received by editor(s): November 7, 2018
- Received by editor(s) in revised form: November 9, 2018, July 7, 2019, and September 9, 2019
- Published electronically: December 26, 2019
- Additional Notes: The first author was supported by NSF DMS-1913080
The second author was supported by the National Natural Science Foundation of China Project 11771338, the Fundamental Research Funds for the Central Universities 2019110066, and Zhejiang Provincial Natural Science Foundation of China Project LY17A010010 - © Copyright 2019 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1711-1744
- MSC (2010): Primary 65N30, 65N12, 65N22
- DOI: https://doi.org/10.1090/mcom/3498
- MathSciNet review: 4081916