High order explicit local time stepping methods for hyperbolic conservation laws
HTML articles powered by AMS MathViewer
- by Thi-Thao-Phuong Hoang, Lili Ju, Wei Leng and Zhu Wang;
- Math. Comp. 89 (2020), 1807-1842
- DOI: https://doi.org/10.1090/mcom/3507
- Published electronically: January 29, 2020
- HTML | PDF | Request permission
Abstract:
In this paper we present and analyze a general framework for constructing high order explicit local time stepping (LTS) methods for hyperbolic conservation laws. In particular, we consider the model problem discretized by Runge-Kutta discontinuous Galerkin (RK-DG) methods and design LTS algorithms based on the strong stability preserving Runge-Kutta (SSP-RK) schemes, that allow spatially variable time step sizes to be used for time integration in different regions of the computational domain. The proposed algorithms are of predictor-corrector-type, in which the interface information along the time direction is first predicted based on the SSP-RK approximations and Taylor expansions, and then the fluxes over the region of the interface are corrected to conserve mass exactly at each time step. Following the proposed framework, we detail the corresponding LTS schemes with accuracy up to the fourth order, and prove their conservation property and nonlinear stability for the scalar conservation laws. Numerical experiments are also presented to demonstrate excellent performance of the proposed LTS algorithms.References
- A. Ashbourne, Efficient Runge-Kutta Based Local Time-Stepping Methods, Master Thesis, University of Waterloo, Canada, 2016.
- Marsha J. Berger and Joseph Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984), no. 3, 484–512. MR 739112, DOI 10.1016/0021-9991(84)90073-1
- Marsha J. Berger and Randall J. Leveque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2298–2316. MR 1655847, DOI 10.1137/S0036142997315974
- Guy Chavent and Bernardo Cockburn, The local projection $P^0P^1$-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 4, 565–592 (English, with French summary). MR 1025072, DOI 10.1051/m2an/1989230405651
- Bernardo Cockburn, Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws, J. Comput. Appl. Math. 128 (2001), no. 1-2, 187–204. Numerical analysis 2000, Vol. VII, Partial differential equations. MR 1820874, DOI 10.1016/S0377-0427(00)00512-4
- Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 3, 337–361 (English, with French summary). MR 1103092, DOI 10.1051/m2an/1991250303371
- Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411–435. MR 983311, DOI 10.1090/S0025-5718-1989-0983311-4
- Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90–113. MR 1015355, DOI 10.1016/0021-9991(89)90183-6
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0
- Bernardo Cockburn and Chi-Wang Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173–261. MR 1873283, DOI 10.1023/A:1012873910884
- Emil M. Constantinescu and Adrian Sandu, Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput. 33 (2007), no. 3, 239–278. MR 2357410, DOI 10.1007/s10915-007-9151-y
- Clint Dawson, High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping, Numer. Methods Partial Differential Equations 11 (1995), no. 5, 525–538. MR 1345758, DOI 10.1002/num.1690110508
- Clint Dawson and Robert Kirby, High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput. 22 (2000), no. 6, 2256–2281. MR 1856633, DOI 10.1137/S1064827500367737
- Margarete O. Domingues, Sônia M. Gomes, Olivier Roussel, and Kai Schneider, An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput. Phys. 227 (2008), no. 8, 3758–3780. MR 2403866, DOI 10.1016/j.jcp.2007.11.046
- M. Dumbser, M. Käser, and E. F. Toro, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity, Geophysical Journal International 171 (2007), 695-717.
- Michael Dumbser, Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg. 280 (2014), 57–83. MR 3255532, DOI 10.1016/j.cma.2014.07.019
- Richard E. Ewing and Hong Wang, A summary of numerical methods for time-dependent advection-dominated partial differential equations, J. Comput. Appl. Math. 128 (2001), no. 1-2, 423–445. Numerical analysis 2000, Vol. VII, Partial differential equations. MR 1820884, DOI 10.1016/S0377-0427(00)00522-7
- J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz, Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws, Journal of Parallel and Distributed Computing 47(2) (1997), 139-152.
- M. J. Gander and L. Halpern, Techniques for locally adaptive time stepping developed over the last two decades, Domain Decomposition Methods in Science and Engineering XX, Lect. Notes Comput. Sci. Eng. 91, Springer, Berlin (2007), 377-385.
- Sigal Gottlieb and Chi-Wang Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp. 67 (1998), no. 221, 73–85. MR 1443118, DOI 10.1090/S0025-5718-98-00913-2
- Marcus J. Grote, Michaela Mehlin, and Teodora Mitkova, Runge-Kutta-based explicit local time-stepping methods for wave propagation, SIAM J. Sci. Comput. 37 (2015), no. 2, A747–A775. MR 3324978, DOI 10.1137/140958293
- S. Gupta, B. Wohlmuth, and R. Helmig, Multi-rate timestepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs, Adv. Water Resour. 91 (2016), 78-87.
- Ami Harten, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal. 21 (1984), no. 1, 1–23. With an appendix by Peter D. Lax. MR 731210, DOI 10.1137/0721001
- Ami Harten, Preliminary results on the extension of ENO schemes to two-dimensional problems, Nonlinear hyperbolic problems (St. Etienne, 1986) Lecture Notes in Math., vol. 1270, Springer, Berlin, 1987, pp. 23–40. MR 910102, DOI 10.1007/BFb0078315
- Ami Harten and Stanley Osher, Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal. 24 (1987), no. 2, 279–309. MR 881365, DOI 10.1137/0724022
- Ami Harten, Björn Engquist, Stanley Osher, and Sukumar R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys. 71 (1987), no. 2, 231–303. MR 897244, DOI 10.1016/0021-9991(87)90031-3
- Thi-Thao-Phuong Hoang, Wei Leng, Lili Ju, Zhu Wang, and Konstantin Pieper, Conservative explicit local time-stepping schemes for the shallow water equations, J. Comput. Phys. 382 (2019), 152–176. MR 3905215, DOI 10.1016/j.jcp.2019.01.006
- Alexander N. Brooks and Thomas J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199–259. FENOMECH ”81, Part I (Stuttgart, 1981). MR 679322, DOI 10.1016/0045-7825(82)90071-8
- Guang-Shan Jiang and Chi-Wang Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), no. 1, 202–228. MR 1391627, DOI 10.1006/jcph.1996.0130
- Claes Johnson, Anders Szepessy, and Peter Hansbo, On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp. 54 (1990), no. 189, 107–129. MR 995210, DOI 10.1090/S0025-5718-1990-0995210-0
- Lilia Krivodonova, An efficient local time-stepping scheme for solution of nonlinear conservation laws, J. Comput. Phys. 229 (2010), no. 22, 8537–8551. MR 2719187, DOI 10.1016/j.jcp.2010.07.037
- Ethan J. Kubatko, Benjamin A. Yeager, and David I. Ketcheson, Optimal strong-stability-preserving Runge-Kutta time discretizations for discontinuous Galerkin methods, J. Sci. Comput. 60 (2014), no. 2, 313–344. MR 3225785, DOI 10.1007/s10915-013-9796-7
- Peter D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954), 159–193. MR 66040, DOI 10.1002/cpa.3160070112
- Xu-Dong Liu, Stanley Osher, and Tony Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994), no. 1, 200–212. MR 1300340, DOI 10.1006/jcph.1994.1187
- F. Lörcher, G. Gassner, and C.-D. Munz, A discontinuous Galerkin scheme based on a space-time expansion. I. Inviscid compressible flow in one space dimension, J. Sci. Comput. 32 (2007), no. 2, 175–199. MR 2320569, DOI 10.1007/s10915-007-9128-x
- K. W. Morton and P. K. Sweby, A comparison of flux limited difference methods and characteristic Galerkin methods for shock modelling, J. Comput. Phys. 73 (1987), 203-230.
- Stanley Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), no. 5, 947–961. MR 799122, DOI 10.1137/0722057
- Stanley Osher and Sukumar Chakravarthy, High resolution schemes and the entropy condition, SIAM J. Numer. Anal. 21 (1984), no. 5, 955–984. MR 760626, DOI 10.1137/0721060
- Stanley Osher and Richard Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp. 41 (1983), no. 164, 321–336. MR 717689, DOI 10.1090/S0025-5718-1983-0717689-8
- Stanley Osher and Eitan Tadmor, On the convergence of difference approximations to scalar conservation laws, Math. Comp. 50 (1988), no. 181, 19–51. MR 917817, DOI 10.1090/S0025-5718-1988-0917817-X
- T. D. Ringler, J. Thuburn, J. B. Klemp, and W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, J. Comput. Phys. 229 (2010), no. 9, 3065–3090. MR 2601090, DOI 10.1016/j.jcp.2009.12.007
- Iryna Rybak, Jim Magiera, Rainer Helmig, and Christian Rohde, Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems, Comput. Geosci. 19 (2015), no. 2, 299–309. MR 3351781, DOI 10.1007/s10596-015-9469-8
- B. F. Sanders, Integration of a shallow water model with a local time-step, J. Hydraul. Res. 46 (4) (2008), 466-475.
- Adrian Sandu and Emil M. Constantinescu, Multirate explicit Adams methods for time integration of conservation laws, J. Sci. Comput. 38 (2009), no. 2, 229–249. MR 2471015, DOI 10.1007/s10915-008-9235-3
- Chi-Wang Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp. 49 (1987), no. 179, 105–121. MR 890256, DOI 10.1090/S0025-5718-1987-0890256-5
- Chi-Wang Shu, TVB boundary treatment for numerical solutions of conservation laws, Math. Comp. 49 (1987), no. 179, 123–134. MR 890257, DOI 10.1090/S0025-5718-1987-0890257-7
- Chi-Wang Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073–1084. MR 963855, DOI 10.1137/0909073
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471. MR 954915, DOI 10.1016/0021-9991(88)90177-5
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. II, J. Comput. Phys. 83 (1989), no. 1, 32–78. MR 1010162, DOI 10.1016/0021-9991(89)90222-2
- Gary A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978), no. 1, 1–31. MR 495002, DOI 10.1016/0021-9991(78)90023-2
- P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984), no. 5, 995–1011. MR 760628, DOI 10.1137/0721062
- A. Taube, M. Dumbser, C. Munz and R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, Int. J. Numer. Model. 22, 2009, pp. 77-103.
- J. Thuburn, T. D. Ringler, W. C. Skamarock, and J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured C-grids, J. Comput. Phys. 228 (2009), no. 22, 8321–8335. MR 2574097, DOI 10.1016/j.jcp.2009.08.006
- V. A. Titarev and E. F. Toro, ADER: arbitrary high order Godunov approach, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 609–618. MR 1910755, DOI 10.1023/A:1015126814947
- Corey J. Trahan and Clint Dawson, Local time-stepping in Runge-Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations, Comput. Methods Appl. Mech. Engrg. 217/220 (2012), 139–152. MR 2897818, DOI 10.1016/j.cma.2012.01.002
- B. Van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method, J. Comput. Phys. 32 (1979), 101-136.
- Paul Woodward and Phillip Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984), no. 1, 115–173. MR 748569, DOI 10.1016/0021-9991(84)90142-6
Bibliographic Information
- Thi-Thao-Phuong Hoang
- Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849
- MR Author ID: 1047473
- Email: tzh0059@auburn.edu
- Lili Ju
- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 645968
- Email: ju@math.sc.edu
- Wei Leng
- Affiliation: State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Email: wleng@lsec.cc.ac.cn
- Zhu Wang
- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 762949
- Email: wangzhu@math.sc.edu
- Received by editor(s): May 22, 2019
- Received by editor(s) in revised form: October 24, 2019
- Published electronically: January 29, 2020
- Additional Notes: This work was partially supported by the U.S. Department of Energy under grant numbers DE-SC0016540 and DE-SC0020270 and the U.S. National Science Foundation under grant numbers DMS-1818438 and DMS-1913073.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1807-1842
- MSC (2010): Primary 65M20, 65L06, 65M12
- DOI: https://doi.org/10.1090/mcom/3507
- MathSciNet review: 4081919