A finite element data assimilation method for the wave equation
HTML articles powered by AMS MathViewer
- by Erik Burman, Ali Feizmohammadi and Lauri Oksanen;
- Math. Comp. 89 (2020), 1681-1709
- DOI: https://doi.org/10.1090/mcom/3508
- Published electronically: February 18, 2020
- HTML | PDF | Request permission
Abstract:
We design a primal-dual stabilized finite element method for the numerical approximation of a data assimilation problem subject to the acoustic wave equation. For the forward problem, piecewise affine, continuous, finite element functions are used for the approximation in space and backward differentiation is used in time. Stabilizing terms are added on the discrete level. The design of these terms is driven by numerical stability and the stability of the continuous problem, with the objective of minimizing the computational error. Error estimates are then derived that are optimal with respect to the approximation properties of the numerical scheme and the stability properties of the continuous problem. The effects of discretizing the (smooth) domain boundary and other perturbations in data are included in the analysis.References
- Sebastián Acosta and Carlos Montalto, Multiwave imaging in an enclosure with variable wave speed, Inverse Problems 31 (2015), no. 6, 065009, 12. MR 3350628, DOI 10.1088/0266-5611/31/6/065009
- Didier Auroux and Jacques Blum, Back and forth nudging algorithm for data assimilation problems, C. R. Math. Acad. Sci. Paris 340 (2005), no. 12, 873–878 (English, with English and French summaries). MR 2151776, DOI 10.1016/j.crma.2005.05.006
- Lucie Baudouin and Sylvain Ervedoza, Convergence of an inverse problem for a 1-D discrete wave equation, SIAM J. Control Optim. 51 (2013), no. 1, 556–598. MR 3032887, DOI 10.1137/110838042
- Lucie Baudouin, Maya De Buhan, and Sylvain Ervedoza, Global Carleman estimates for waves and applications, Comm. Partial Differential Equations 38 (2013), no. 5, 823–859. MR 3046295, DOI 10.1080/03605302.2013.771659
- C. Bardos, G. Lebeau, and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Rend. Sem. Mat. Univ. Politec. Torino Special Issue (1988), 11–31 (1989) (French). Nonlinear hyperbolic equations in applied sciences. MR 1007364
- Laurent Bourgeois, Dmitry Ponomarev, and Jérémi Dardé, An inverse obstacle problem for the wave equation in a finite time domain, Inverse Probl. Imaging 13 (2019), no. 2, 377–400. MR 3925424, DOI 10.3934/ipi.2019019
- James H. Bramble and J. Thomas King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comp. 63 (1994), no. 207, 1–17. MR 1242055, DOI 10.1090/S0025-5718-1994-1242055-6
- Erik Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, SIAM J. Sci. Comput. 35 (2013), no. 6, A2752–A2780. MR 3134434, DOI 10.1137/130916862
- Erik Burman, Error estimates for stabilized finite element methods applied to ill-posed problems, C. R. Math. Acad. Sci. Paris 352 (2014), no. 7-8, 655–659 (English, with English and French summaries). MR 3237821, DOI 10.1016/j.crma.2014.06.008
- E. Burman, A. Feizmohammadi, and L. Oksanen, A fully discrete numerical control method for the wave equation, 2019, arXiv preprint.
- Erik Burman and Lauri Oksanen, Data assimilation for the heat equation using stabilized finite element methods, Numer. Math. 139 (2018), no. 3, 505–528. MR 3814604, DOI 10.1007/s00211-018-0949-3
- Erik Burman, Mihai Nechita, and Lauri Oksanen, Unique continuation for the Helmholtz equation using stabilized finite element methods, J. Math. Pures Appl. (9) 129 (2019), 1–22 (English, with English and French summaries). MR 3998787, DOI 10.1016/j.matpur.2018.10.003
- Erik Burman, Jonathan Ish-Horowicz, and Lauri Oksanen, Fully discrete finite element data assimilation method for the heat equation, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 5, 2065–2082. MR 3893359, DOI 10.1051/m2an/2018030
- Olga Chervova and Lauri Oksanen, Time reversal method with stabilizing boundary conditions for photoacoustic tomography, Inverse Problems 32 (2016), no. 12, 125004, 16. MR 3628888, DOI 10.1088/0266-5611/32/12/125004
- Nicolae Cîndea and Arnaud Münch, Inverse problems for linear hyperbolic equations using mixed formulations, Inverse Problems 31 (2015), no. 7, 075001, 38. MR 3366750, DOI 10.1088/0266-5611/31/7/075001
- Christian Clason and Michael V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 1–23. MR 2377428, DOI 10.1137/06066970X
- T. Duyckaerts, X. Zhang, and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal.
- S. Engel, P. Trautmann, and B. Vexler, Optimal finite element error estimates for an optimal control problem governed by the wave equation with controls of bounded variation, submitted, IMA Journal of Numerical Analysis, Preprint arXiv: 1907.11197, (2019).
- Sylvain Ervedoza and Enrique Zuazua, Numerical approximation of exact controls for waves, SpringerBriefs in Mathematics, Springer, New York, 2013. MR 3058594, DOI 10.1007/978-1-4614-5808-1
- Sylvain Ervedoza, Aurora Marica, and Enrique Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis, IMA J. Numer. Anal. 36 (2016), no. 2, 503–542. MR 3483095, DOI 10.1093/imanum/drv026
- Fatiha Alabau-Boussouira, Roger Brockett, Olivier Glass, Jérôme Le Rousseau, and Enrique Zuazua, Control of partial differential equations, Lecture Notes in Mathematics, vol. 2048, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2012. Lectures from the CIME Course held in Cetraro, July 19–23, 2010; Edited by Piermarco Cannarsa and Jean-Michel Coron; Fondazione CIME/CIME Foundation Subseries. MR 3235195, DOI 10.1007/978-3-642-27893-8
- R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems, Acta numerica, 1995, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 159–333. MR 1352473, DOI 10.1017/s0962492900002543
- Ghislain Haine and Karim Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, Numer. Math. 120 (2012), no. 2, 307–343. MR 2874968, DOI 10.1007/s00211-011-0408-x
- M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, vol. 23, Springer, New York, 2009. MR 2516528
- Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR 781537
- Oleg Yu. Imanuvilov, On Carleman estimates for hyperbolic equations, Asymptot. Anal. 32 (2002), no. 3-4, 185–220. MR 1993649
- Juan Antonio Infante and Enrique Zuazua, Boundary observability for the space semi-discretizations of the $1$-D wave equation, M2AN Math. Model. Numer. Anal. 33 (1999), no. 2, 407–438 (English, with English and French summaries). MR 1700042, DOI 10.1051/m2an:1999123
- Y. Junjie, V. W. Lihong, and J. Xia, Photoacoustic tomography: Principles and advances, Electromagnetic waves (Cambridge, Mass), 147, 1-22 (2014).
- Michael V. Klibanov and Joseph Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data, Inverse Problems 7 (1991), no. 4, 577–596. MR 1122038
- Michael Klibanov and Rakesh, Numerical solution of a time-like Cauchy problem for the wave equation, Math. Methods Appl. Sci. 15 (1992), no. 8, 559–570. MR 1184323, DOI 10.1002/mma.1670150805
- A. Kröner, Numerical Methods for Control of Second Order Hyperbolic Equations, Ph.D. thesis, Fakultätfür Mathematik, Technische Universität München, 2011.
- Peter Kuchment and Leonid Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math. 19 (2008), no. 2, 191–224. MR 2400720, DOI 10.1017/S0956792508007353
- Karl Kunisch, Philip Trautmann, and Boris Vexler, Optimal control of the undamped linear wave equation with measure valued controls, SIAM J. Control Optim. 54 (2016), no. 3, 1212–1244. MR 3499548, DOI 10.1137/141001366
- Karl Kunisch and Daniel Wachsmuth, On time optimal control of the wave equation and its numerical realization as parametric optimization problem, SIAM J. Control Optim. 51 (2013), no. 2, 1232–1262. MR 3035464, DOI 10.1137/120877520
- Linh V. Nguyen and Leonid A. Kunyansky, A dissipative time reversal technique for photoacoustic tomography in a cavity, SIAM J. Imaging Sci. 9 (2016), no. 2, 748–769. MR 3505305, DOI 10.1137/15M1049683
- John E. Lagnese and Günter Leugering, Domain decomposition methods in optimal control of partial differential equations, International Series of Numerical Mathematics, vol. 148, Birkhäuser Verlag, Basel, 2004. MR 2093789, DOI 10.1007/978-3-0348-7885-2
- R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications, Travaux et Recherches Mathématiques, No. 15, Dunod, Paris, 1967 (French). MR 232549
- Jérôme Le Rousseau, Gilles Lebeau, Peppino Terpolilli, and Emmanuel Trélat, Geometric control condition for the wave equation with a time-dependent observation domain, Anal. PDE 10 (2017), no. 4, 983–1015. MR 3649373, DOI 10.2140/apde.2017.10.983
- I. Lasiecka, J.-L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl. (9) 65 (1986), no. 2, 149–192. MR 867669
- V. W. Lihong and X. Minghua, Photoacoustic Imaging in Biomedicine, Review of Scientific Instruments, 4, Vol. 77 (2006).
- J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 2, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 9, Masson, Paris, 1988 (French). Perturbations. [Perturbations]. MR 963060
- Luc Miller, Escape function conditions for the observation, control, and stabilization of the wave equation, SIAM J. Control Optim. 41 (2002), no. 5, 1554–1566. MR 1971962, DOI 10.1137/S036301290139107X
- Luc Miller, Resolvent conditions for the control of unitary groups and their approximations, J. Spectr. Theory 2 (2012), no. 1, 1–55. MR 2879308, DOI 10.4171/JST/20
- S. Montaner and A. Münch, Approximation of controls for linear wave equations: A first order mixed formulation, Preprint hal-01792949.
- Karim Ramdani, Marius Tucsnak, and George Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica J. IFAC 46 (2010), no. 10, 1616–1625. MR 2877317, DOI 10.1016/j.automatica.2010.06.032
- Y. Sasaki, Some basic formalisms in numerical variational analysis, Mon. Weather Rev. 98, (1970) pp. 875–883.
- Plamen Stefanov and Gunther Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), no. 7, 075011, 16. MR 2519863, DOI 10.1088/0266-5611/25/7/075011
- Plamen Stefanov and Yang Yang, Multiwave tomography in a closed domain: averaged sharp time reversal, Inverse Problems 31 (2015), no. 6, 065007, 23. MR 3350626, DOI 10.1088/0266-5611/31/6/065007
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- O. Scherzer, Handbook of mathematical methods in imaging, Springer Science & Business Media. (2010)
- Olivier Talagrand, On the mathematics of data assimilation, Tellus 33 (1981), no. 4, 321–339 (English, with Russian summary). MR 628731, DOI 10.3402/tellusa.v33i4.10719
- Philip Trautmann, Boris Vexler, and Alexander Zlotnik, Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients, Math. Control Relat. Fields 8 (2018), no. 2, 411–449. MR 3810882, DOI 10.3934/mcrf.2018017
- L. V. Wang, Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.
- Enrique Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev. 47 (2005), no. 2, 197–243. MR 2179896, DOI 10.1137/S0036144503432862
Bibliographic Information
- Erik Burman
- Affiliation: Department of Mathematics, University College London, London, UK-WC1E 6BT, United Kingdom
- MR Author ID: 602430
- Email: e.burman@ucl.ac.uk
- Ali Feizmohammadi
- Affiliation: Department of Mathematics, University College London, London, UK-WC1E 6BT, United Kingdom
- ORCID: 0000-0002-3850-8091
- Email: a.feizmohammadi@ucl.ac.uk
- Lauri Oksanen
- Affiliation: Department of Mathematics, University College London, London, UK-WC1E 6BT, United Kingdom
- MR Author ID: 906909
- ORCID: 0000-0002-3228-7507
- Email: l.oksanen@ucl.ac.uk
- Received by editor(s): November 26, 2018
- Received by editor(s) in revised form: September 16, 2019, and November 8, 2019
- Published electronically: February 18, 2020
- Additional Notes: The first author acknowledges funding by EPSRC grants EP/P01576X/1 and EP/P012434/1
The second author acknowledges funding by EPSRC grant EP/P01593X/1
The third author acknowledges funding by EPSRC grants EP/P01593X/1 and EP/R002207/1 - © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 1681-1709
- MSC (2010): Primary 65M32, 65M60; Secondary 35R30, 65M12
- DOI: https://doi.org/10.1090/mcom/3508
- MathSciNet review: 4081915