A fast randomized geometric algorithm for computing Riemann-Roch spaces
HTML articles powered by AMS MathViewer
- by Aude Le Gluher and Pierre-Jean Spaenlehauer;
- Math. Comp. 89 (2020), 2399-2433
- DOI: https://doi.org/10.1090/mcom/3517
- Published electronically: February 18, 2020
- HTML | PDF | Request permission
Abstract:
We propose a probabilistic variant of Brill-Noether’s algorithm for computing a basis of the Riemann-Roch space $L(D)$ associated to a divisor $D$ on a projective nodal plane curve $\mathbb {C}$ over a sufficiently large perfect field $k$. Our main result shows that this algorithm requires at most $O(\max (\deg (\mathbb {C})^{2\omega }, \deg (D_+)^\omega ))$ arithmetic operations in $k$, where $\omega$ is a feasible exponent for matrix multiplication and $D_+$ is the smallest effective divisor such that $D_+\geq D$. This improves the best known upper bounds on the complexity of computing Riemann-Roch spaces. Our algorithm may fail, but we show that provided that a few mild assumptions are satisfied, the failure probability is bounded by $O(\max (\deg (\mathbb {C})^4, \deg (D_+)^2)/\lvert \mathcal E\rvert )$, where $\mathcal E$ is a finite subset of $k$ in which we pick elements uniformly at random. We provide a freely available C++/NTL implementation of the proposed algorithm and we present experimental data. In particular, our implementation enjoys a speedup larger than 6 on many examples (and larger than 200 on some instances over large finite fields) compared to the reference implementation in the Magma computer algebra system. As a by-product, our algorithm also yields a method for computing the group law on the Jacobian of a smooth plane curve of genus $g$ within $O(g^\omega )$ operations in $k$, which equals the best known complexity for this problem.References
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- L. Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de Montréal Technical Report, DMS (1979), no. 79-10.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- James R. Bunch and John E. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Math. Comp. 28 (1974), 231–236. MR 331751, DOI 10.1090/S0025-5718-1974-0331751-8
- J. Canny, Some algebraic and geometric computations in PSPACE, Proc. of the twentieth annual ACM Symposium on Theory of Computing (STOC), ACM, 1988, pp. 460–467.
- David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Inform. 28 (1991), no. 7, 693–701. MR 1129288, DOI 10.1007/BF01178683
- M’hammed El Kahoui, An elementary approach to subresultants theory, J. Symbolic Comput. 35 (2003), no. 3, 281–292. MR 1962796, DOI 10.1016/S0747-7171(02)00135-9
- William Fulton, Algebraic curves. An introduction to algebraic geometry, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss. MR 313252
- Marc Giusti, Grégoire Lecerf, and Bruno Salvy, A Gröbner free alternative for polynomial system solving, J. Complexity 17 (2001), no. 1, 154–211. MR 1817612, DOI 10.1006/jcom.2000.0571
- V. D. Goppa, Algebraic-geometric codes, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 4, 762–781, 896 (Russian). MR 670165
- Gaétan Haché, Computation in algebraic function fields for effective construction of algebraic-geometric codes, Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995) Lecture Notes in Comput. Sci., vol. 948, Springer, Berlin, 1995, pp. 262–278. MR 1448169, DOI 10.1007/3-540-60114-7_{1}9
- Gaétan Haché and Dominique Le Brigand, Effective construction of algebraic geometry codes, IEEE Trans. Inform. Theory 41 (1995), no. 6, 1615–1628. Special issue on algebraic geometry codes. MR 1391019, DOI 10.1109/18.476233
- F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445. MR 1890579, DOI 10.1006/jsco.2001.0513
- Ming-Deh Huang and Doug Ierardi, Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian of a curve, J. Symbolic Comput. 18 (1994), no. 6, 519–539. MR 1334660, DOI 10.1006/jsco.1994.1063
- J.-P. Jouanolou, Le formalisme du résultant, Adv. Math. 90 (1991), no. 2, 117–263 (French). MR 1142904, DOI 10.1016/0001-8708(91)90031-2
- Kamal Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general curves, Math. Comp. 76 (2007), no. 260, 2213–2239. MR 2336292, DOI 10.1090/S0025-5718-07-01989-8
- D. Le Brigand and J.-J. Risler, Algorithme de Brill-Noether et codes de Goppa, Bull. Soc. Math. France 116 (1988), no. 2, 231–253 (French, with English summary). MR 971561
- François Le Gall, Powers of tensors and fast matrix multiplication, ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 296–303. MR 3239939, DOI 10.1145/2608628.2608664
- Vincent Neiger, Johan Rosenkilde, and Éric Schost, Fast computation of the roots of polynomials over the ring of power series, ISSAC’17—Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2017, pp. 349–356. MR 3703706
- Clément Pernet and Arne Storjohann, Faster algorithms for the characteristic polynomial, ISSAC 2007, ACM, New York, 2007, pp. 307–314. MR 2402276, DOI 10.1145/1277548.1277590
- Jacob T. Schwartz, Probabilistic algorithms for verification of polynomial identities, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 200–215. MR 575691
- Francesco Severi, Vorlesungen über algebraische Geometrie: Geometrie auf einer Kurve, Riemannsche Flächen, Abelsche Integrale, Bibliotheca Mathematica Teubneriana, Band 32, Johnson Reprint Corp., New York-London, 1968 (German). Berechtigte Deutsche Übersetzung von Eugen Löffler; Mit einem Einführungswort von A. Brill; Begleitwort zum Neudruck von Beniamino Segre. MR 245574
- A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, ETH Zurich, 2000.
- J. V. Der Hoeven and G. Lecerf, Fast computation of generic bivariate resultants, Preprint, 2019.
- Gilles Villard, On computing the resultant of generic bivariate polynomials, ISSAC’18—Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2018, pp. 391–398. MR 3840406, DOI 10.1145/3208976.3209020
- Emil J. Volcheck, Computing in the Jacobian of a plane algebraic curve, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 221–233. MR 1322725, DOI 10.1007/3-540-58691-1_{6}0
- Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 3rd ed., Cambridge University Press, Cambridge, 2013. MR 3087522, DOI 10.1017/CBO9781139856065
Bibliographic Information
- Aude Le Gluher
- Affiliation: CARAMBA project, Université de Lorraine; and Inria Nancy – Grand Est; and CNRS, UMR 7503, LORIA, Nancy, France
- Email: aude.le-gluher@loria.fr
- Pierre-Jean Spaenlehauer
- Affiliation: CARAMBA project, INRIA Nancy – Grand Est; and Université de Lorraine; and CNRS, UMR 7503, LORIA, Nancy, France
- MR Author ID: 916294
- Email: pierre-jean.spaenlehauer@inria.fr
- Received by editor(s): May 16, 2019
- Received by editor(s) in revised form: October 8, 2019, and December 6, 2019
- Published electronically: February 18, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2399-2433
- MSC (2010): Primary 14Q05, 68W30
- DOI: https://doi.org/10.1090/mcom/3517
- MathSciNet review: 4109572