An analog to the Schur-Siegel-Smyth trace problem
HTML articles powered by AMS MathViewer
- by V. Flammang;
- Math. Comp. 89 (2020), 2387-2398
- DOI: https://doi.org/10.1090/mcom/3518
- Published electronically: February 18, 2020
- HTML | PDF | Request permission
Abstract:
If $\alpha$ denotes a totally positive algebraic integer of degree $d$, i.e., its conjugates $\alpha _1=\alpha , \ldots , \alpha _d$ are positive real numbers, we define ${\mathrm {S}}_k(\alpha )= \sum _{i=1}^{d} \alpha _i^k$. ${\mathrm {S}}_1(\alpha )$ is the usual trace of $\alpha$ and has been studied by many authors throughout the years. In this paper, we focus our attention on the values of ${\mathrm {S}}_2(\alpha )$, and our purpose is to establish for ${\mathrm {S}}_2$ the same kinds of results as for the trace.References
- Julián Aguirre, Mikel Bilbao, and Juan Carlos Peral, The trace of totally positive algebraic integers, Math. Comp. 75 (2006), no. 253, 385–393. MR 2176405, DOI 10.1090/S0025-5718-05-01776-X
- James McKee and Chris Smyth (eds.), Number theory and polynomials, London Mathematical Society Lecture Note Series, vol. 352, Cambridge University Press, Cambridge, 2008. MR 2432165, DOI 10.1017/CBO9780511721274
- Julián Aguirre and Juan Carlos Peral, The integer Chebyshev constant of Farey intervals, Publ. Mat. Proceedings of the Primeras Jornadas de Teoría de Números (2007), 11–27. MR 2499685, DOI 10.5565/PUBLMAT_{P}JTN05_{0}1
- Julián Aguirre and Juan Carlos Peral, The trace problem for totally positive algebraic integers, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 1–19. With an appendix by Jean-Pierre Serre. MR 2428512, DOI 10.1017/CBO9780511721274.003
- Xiaoqian Dong and Qiang Wu, The absolute trace of totally positive reciprocal algebraic integers, J. Number Theory 170 (2017), 66–74. MR 3541699, DOI 10.1016/j.jnt.2016.06.016
- V. Flammang, Une nouvelle minoration pour la trace absolue des entiers algébriques totalement positifs, http://arxiv.org/abs/1907.09407, 2019.
- Yanhua Liang and Qiang Wu, The trace problem for totally positive algebraic integers, J. Aust. Math. Soc. 90 (2011), no. 3, 341–354. MR 2833305, DOI 10.1017/S1446788711001030
- I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), no. 4, 377–402 (German). MR 1544303, DOI 10.1007/BF01465096
- Carl Ludwig Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. (2) 46 (1945), 302–312. MR 12092, DOI 10.2307/1969025
- C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp. 42 (1984), no. 166, 663–681. MR 736460, DOI 10.1090/S0025-5718-1984-0736460-5
- Christopher Smyth, Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 1–28 (English, with French summary). MR 762691, DOI 10.5802/aif.985
- Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901–911. MR 1954974, DOI 10.1090/S0025-5718-02-01442-4
Bibliographic Information
- V. Flammang
- Affiliation: UMR CNRS 7502, IECL, Université de Lorraine, Département de Mathématiques, UFR MIM, 3 rue Augustin Fresnel, BP 45112 57073 Metz cedex 3, France
- MR Author ID: 360354
- Email: valerie.flammang@univ-lorraine.fr
- Received by editor(s): September 19, 2019
- Received by editor(s) in revised form: December 4, 2019
- Published electronically: February 18, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2387-2398
- MSC (2010): Primary 11C08, 11R06, 11Y40
- DOI: https://doi.org/10.1090/mcom/3518
- MathSciNet review: 4109571