## Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension

HTML articles powered by AMS MathViewer

- by
Yang Yang, Xiaofeng Cai and Jing-Mei Qiu
**HTML**| PDF - Math. Comp.
**89**(2020), 2113-2139 Request permission

## Abstract:

In this paper, we apply semi-Lagrangian discontinuous Galerkin (SLDG) methods for linear hyperbolic equations in one space dimension and analyze the error between the numerical and exact solutions under the $L^2$-norm. In all the previous works, the theoretical analysis of the SLDG method would suggest a suboptimal convergence rate due to the error accumulation over time steps. However, numerical experiments demonstrate an optimal convergence rate and, if the terminal time is large, a superconvergence rate. In this paper, we will prove optimal convergence and optimal superconvergence rates. There are three main difficulties: 1. The error analysis on overlapping meshes. Due to the nature of the semi-Lagrangian time discretization, we need to introduce the background Eulerian mesh and the shifted mesh. The two meshes are staggered, and it is not easy to construct local projections and to handle the error accumulation during time evolution. 2. The superconvergence of time-dependent terms under the $L^2$-norm. The error of the numerical and exact solutions can be divided into two parts, the projection error and the time-dependent superconvergence term. The projection strongly depends on the superconvergence rates. Therefore, we need to construct a sequence of projections and gradually improve the superconvergence rates. 3. The stopping criterion of the sequence of projections. The sequence of projections are basically of the same form. We need to show that the projections exist up to some certain order since the superconvergence rate cannot be infinity. Hence, we will seek some βhiddenβ condition for the existence of the projections. In this paper, we will solve all the three difficulties and construct several local projections to prove the optimal convergence and superconvergence rates. Numerical experiments verify the theoretical findings.## References

- Slimane Adjerid and Thomas C. Massey,
*Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem*, Comput. Methods Appl. Mech. Engrg.**195**(2006), no.Β 25-28, 3331β3346. MR**2220922**, DOI 10.1016/j.cma.2005.06.017 - Slimane Adjerid and Thomas Weinhart,
*Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems*, Comput. Methods Appl. Mech. Engrg.**198**(2009), no.Β 37-40, 3113β3129. MR**2567860**, DOI 10.1016/j.cma.2009.05.016 - Slimane Adjerid and Thomas Weinhart,
*Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems*, Math. Comp.**80**(2011), no.Β 275, 1335β1367. MR**2785461**, DOI 10.1090/S0025-5718-2011-02460-9 - Xiaofeng Cai, Wei Guo, and Jing-Mei Qiu,
*A high order conservative semi-Lagrangian discontinuous Galerkin method for two-dimensional transport simulations*, J. Sci. Comput.**73**(2017), no.Β 2-3, 514β542. MR**3719597**, DOI 10.1007/s10915-017-0554-0 - Xiaofeng Cai, Wei Guo, and Jing-Mei Qiu,
*A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting*, J. Comput. Phys.**354**(2018), 529β551. MR**3738121**, DOI 10.1016/j.jcp.2017.10.048 - Waixiang Cao, Dongfang Li, Yang Yang, and Zhimin Zhang,
*Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations*, ESAIM Math. Model. Numer. Anal.**51**(2017), no.Β 2, 467β486. MR**3626407**, DOI 10.1051/m2an/2016026 - Waixiang Cao, Chi-Wang Shu, and Zhimin Zhang,
*Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients*, ESAIM Math. Model. Numer. Anal.**51**(2017), no.Β 6, 2213β2235. MR**3745170**, DOI 10.1051/m2an/2017026 - Waixiang Cao, Chi-Wang Shu, Yang Yang, and Zhimin Zhang,
*Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations*, SIAM J. Numer. Anal.**53**(2015), no.Β 4, 1651β1671. MR**3365565**, DOI 10.1137/140996203 - Waixiang Cao, Chi-Wang Shu, Yang Yang, and Zhimin Zhang,
*Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations*, SIAM J. Numer. Anal.**56**(2018), no.Β 2, 732β765. MR**3780748**, DOI 10.1137/17M1128605 - Waixiang Cao and Zhimin Zhang,
*Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations*, J. Sci. Comput.**77**(2018), no.Β 3, 1402β1423. MR**3874779**, DOI 10.1007/s10915-018-0762-2 - Waixiang Cao, Zhimin Zhang, and Qingsong Zou,
*Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations*, SIAM J. Numer. Anal.**52**(2014), no.Β 5, 2555β2573. MR**3270187**, DOI 10.1137/130946873 - N. Chalmers and L. Krivodonova,
*Spatial and modal superconvergence of the discontinuous Galerkin method for linear equations*, J. Sci. Comput.**72**(2017), no.Β 1, 128β146. MR**3661100**, DOI 10.1007/s10915-016-0349-8 - Yingda Cheng and Chi-Wang Shu,
*Superconvergence and time evolution of discontinuous Galerkin finite element solutions*, J. Comput. Phys.**227**(2008), no.Β 22, 9612β9627. MR**2467636**, DOI 10.1016/j.jcp.2008.07.010 - Yingda Cheng and Chi-Wang Shu,
*Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension*, SIAM J. Numer. Anal.**47**(2010), no.Β 6, 4044β4072. MR**2585178**, DOI 10.1137/090747701 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - Lukas Einkemmer and Alexander Ostermann,
*Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov-Poisson equations*, SIAM J. Numer. Anal.**52**(2014), no.Β 2, 757β778. MR**3187672**, DOI 10.1137/120898620 - Maurizio Falcone and Roberto Ferretti,
*Convergence analysis for a class of high-order semi-Lagrangian advection schemes*, SIAM J. Numer. Anal.**35**(1998), no.Β 3, 909β940. MR**1619910**, DOI 10.1137/S0036142994273513 - Li Guo and Yang Yang,
*Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations with singular initial data*, Int. J. Numer. Anal. Model.**14**(2017), no.Β 3, 342β354. MR**3652168** - Wei Guo and Jing-Mei Qiu,
*Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation*, J. Comput. Phys.**234**(2013), 108β132. MR**2999770**, DOI 10.1016/j.jcp.2012.09.014 - W. Guo and J.-M. Qiu,
*A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed sphere*, Mon. Weather Rev.**142**(2014), 457-475. - Wei Guo, Xinghui Zhong, and Jing-Mei Qiu,
*Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach*, J. Comput. Phys.**235**(2013), 458β485. MR**3017607**, DOI 10.1016/j.jcp.2012.10.020 - Yong Liu, Chi-Wang Shu, and Mengping Zhang,
*Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations*, SIAM J. Numer. Anal.**56**(2018), no.Β 1, 520β541. MR**3763093**, DOI 10.1137/16M1089484 - Yong Liu, Chi-Wang Shu, and Mengping Zhang,
*Superconvergence of energy-conserving discontinuous Galerkin methods for linear hyperbolic equations*, Commun. Appl. Math. Comput.**1**(2019), no.Β 1, 101β116. MR**4022325**, DOI 10.1007/s42967-019-0006-y - X. Meng, C.-W. Shu, and Y. Yang,
*Superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations*, Sci. Sin. Math.,**45**(2015), 1041-1060. - Xiong Meng, Chi-Wang Shu, Qiang Zhang, and Boying Wu,
*Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension*, SIAM J. Numer. Anal.**50**(2012), no.Β 5, 2336β2356. MR**3022221**, DOI 10.1137/110857635 - Jing-Mei Qiu and Chi-Wang Shu,
*Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system*, J. Comput. Phys.**230**(2011), no.Β 23, 8386β8409. MR**2843721**, DOI 10.1016/j.jcp.2011.07.018 - James A. Rossmanith and David C. Seal,
*A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations*, J. Comput. Phys.**230**(2011), no.Β 16, 6203β6232. MR**2806222**, DOI 10.1016/j.jcp.2011.04.018 - Philip Roe,
*A simple explanation of superconvergence for discontinuous Galerkin solutions to $u_t+u_x=0$*, Commun. Comput. Phys.**21**(2017), no.Β 4, 905β912. MR**3621618**, DOI 10.4208/cicp.OA-2016-0052 - Yang Yang and Chi-Wang Shu,
*Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations*, SIAM J. Numer. Anal.**50**(2012), no.Β 6, 3110β3133. MR**3022256**, DOI 10.1137/110857647 - Jianxian Qiu and Chi-Wang Shu,
*Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method. II. Two dimensional case*, Comput. & Fluids**34**(2005), no.Β 6, 642β663. MR**2125442**, DOI 10.1016/j.compfluid.2004.05.005 - Xinghui Zhong and Chi-Wang Shu,
*Numerical resolution of discontinuous Galerkin methods for time dependent wave equations*, Comput. Methods Appl. Mech. Engrg.**200**(2011), no.Β 41-44, 2814β2827. MR**2824155**, DOI 10.1016/j.cma.2011.05.010

## Additional Information

**Yang Yang**- Affiliation: Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931
- MR Author ID: 1008921
- Email: yyang7@mtu.edu
**Xiaofeng Cai**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 1167587
- Email: xfcai@udel.edu
**Jing-Mei Qiu**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 843920
- Email: jingqiu@udel.edu
- Received by editor(s): August 21, 2019
- Received by editor(s) in revised form: January 10, 2020
- Published electronically: March 10, 2020
- Additional Notes: The first author was supported by NSF grant DMS-1818467.

The second and third authors were supported by NSF grant NSF-DMS-1818924, Air Force Office of Scientific Computing FA9550-18-1-0257. - © Copyright 2020 American Mathematical Society
- Journal: Math. Comp.
**89**(2020), 2113-2139 - MSC (2010): Primary 65M15, 65M60; Secondary 65M20
- DOI: https://doi.org/10.1090/mcom/3527
- MathSciNet review: 4109562