Rational approximation to Euler’s constant at a geometric rate of convergence
HTML articles powered by AMS MathViewer
- by José A. Adell and Alberto Lekuona;
- Math. Comp. 89 (2020), 2553-2561
- DOI: https://doi.org/10.1090/mcom/3528
- Published electronically: February 20, 2020
- HTML | PDF | Request permission
Abstract:
We give a rational approximation to Euler’s constant at a geometric rate of convergence, which is easy to compute. Moreover, such an approximation is completely monotonic. The approximants are built up in terms of expectations of the harmonic numbers acting on the standard Poisson process.References
- José A. Adell and Alberto Lekuona, Acceleration methods for series: a probabilistic perspective, Mediterr. J. Math. 13 (2016), no. 6, 5063–5076. MR 3564551, DOI 10.1007/s00009-016-0792-7
- José A. Adell and Alberto Lekuona, Fast computation of the Stieltjes constants, Math. Comp. 86 (2017), no. 307, 2479–2492. MR 3647968, DOI 10.1090/mcom/3176
- José A. Adell and Alberto Lekuona, Binomial identities and moments of random variables, Amer. Math. Monthly 125 (2018), no. 4, 365–369. MR 3779226, DOI 10.1080/00029890.2018.1424428
- Richard P. Brent and Edwin M. McMillan, Some new algorithms for high-precision computation of Euler’s constant, Math. Comp. 34 (1980), no. 149, 305–312. MR 551307, DOI 10.1090/S0025-5718-1980-0551307-4
- Chao-Ping Chen and Cristinel Mortici, New sequence converging towards the Euler-Mascheroni constant, Comput. Math. Appl. 64 (2012), no. 4, 391–398. MR 2948588, DOI 10.1016/j.camwa.2011.03.099
- Mark W. Coffey, The Stieltjes constants, their relation to the $\eta _j$ coefficients, and representation of the Hurwitz zeta function, Analysis (Munich) 30 (2010), no. 4, 383–409. MR 2759291, DOI 10.1524/anly.2010.1048
- C. Elsner, On a sequence transformation with integral coefficients for Euler’s constant, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1537–1541. MR 1233969, DOI 10.1090/S0002-9939-1995-1233969-4
- Carsten Elsner, On a sequence transformation with integral coefficients for Euler’s constant. II, J. Number Theory 124 (2007), no. 2, 442–453. MR 2321373, DOI 10.1016/j.jnt.2006.10.002
- William Feller, An introduction to probability theory and its applications. Vol. II, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 270403
- Allan Gut, Probability: a graduate course, Springer Texts in Statistics, Springer, New York, 2005. MR 2125120
- Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Arithmetical properties of some series with logarithmic coefficients, Math. Z. 255 (2007), no. 1, 117–131. MR 2262724, DOI 10.1007/s00209-006-0015-1
- Kh. Hessami Pilehrood and T. Hessami Pilehrood, Approximations to Euler’s constant, Math. Inequal. Appl. 13 (2010), no. 4, 761–773. MR 2760499, DOI 10.7153/mia-13-55
- Kh. Hessami Pilehrood and T. Hessami Pilehrood, On a continued fraction expansion for Euler’s constant, J. Number Theory 133 (2013), no. 2, 769–786. MR 2994386, DOI 10.1016/j.jnt.2012.08.016
- Xiaoyun Hu, Dawei Lu, and Xiaoguang Wang, New quicker sequences and inequalities with continued fraction towards Euler’s constant, Results Math. 73 (2018), no. 1, Paper No. 28, 10. MR 3761150, DOI 10.1007/s00025-018-0796-7
- Norman L. Johnson, Samuel Kotz, and Adrienne W. Kemp, Univariate discrete distributions, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1224449
- Jeffrey C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 4, 527–628. MR 3090422, DOI 10.1090/S0273-0979-2013-01423-X
- Dawei Lu, Some quicker classes of sequences convergent to Euler’s constant, Appl. Math. Comput. 232 (2014), 172–177. MR 3181255, DOI 10.1016/j.amc.2014.01.068
- Dawei Lu, Lixin Song, and Yang Yu, Some quicker continued fraction approximations and inequalities towards Euler’s constant, J. Number Theory 175 (2017), 100–116. MR 3608181, DOI 10.1016/j.jnt.2016.11.024
- Jonathan Sondow, Criteria for irrationality of Euler’s constant, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3335–3344. MR 1990621, DOI 10.1090/S0002-9939-03-07081-3
- Dura W. Sweeney, On the computation of Euler’s constant, Math. Comp. 17 (1963), 170–178. MR 160308, DOI 10.1090/S0025-5718-1963-0160308-X
- Shanhe Wu and Gabriel Bercu, A new sequence related to the Euler-Mascheroni constant, J. Inequal. Appl. , posted on (2018), Paper No. 151, 12. MR 3819740, DOI 10.1186/s13660-018-1746-3
- Shijun Yang, On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant, J. Math. Anal. Appl. 396 (2012), no. 2, 689–693. MR 2961262, DOI 10.1016/j.jmaa.2012.07.007
Bibliographic Information
- José A. Adell
- Affiliation: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- MR Author ID: 340766
- Email: adell@unizar.es
- Alberto Lekuona
- Affiliation: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- MR Author ID: 663604
- Email: lekuona@unizar.es
- Received by editor(s): January 16, 2019
- Received by editor(s) in revised form: November 20, 2019, and January 13, 2020
- Published electronically: February 20, 2020
- Additional Notes: The authors were partially supported by Research Projects DGA (E-64) and MTM2015-67006-P. The first author is the corresponding author.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2553-2561
- MSC (2010): Primary 11Y60; Secondary 60E05
- DOI: https://doi.org/10.1090/mcom/3528
- MathSciNet review: 4109578