Finding all Borcherds product paramodular cusp forms of a given weight and level
HTML articles powered by AMS MathViewer
- by Cris Poor, Jerry Shurman and David S. Yuen;
- Math. Comp. 89 (2020), 2435-2480
- DOI: https://doi.org/10.1090/mcom/3532
- Published electronically: March 31, 2020
- HTML | PDF | Request permission
Abstract:
We present an algorithm to compute all Borcherds product paramodular cusp forms of a specified weight and level, describing its implementation in some detail and giving examples of its use.References
- Hiroki Aoki and Tomoyoshi Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Internat. J. Math. 16 (2005), no. 3, 249–279. MR 2130626, DOI 10.1142/S0129167X05002837
- Tobias Berger and Krzysztof Klosin, Deformations of Saito-Kurokawa type and the paramodular conjecture. To appear in Amer. J. Math.
- Jeffery Breeding II, Cris Poor, and David S. Yuen, Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53 (2016), no. 3, 645–689. MR 3498287, DOI 10.4134/JKMS.j150219
- Armand Brumer and Kenneth Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463–2516. MR 3165645, DOI 10.1090/S0002-9947-2013-05909-0
- Armand Brumer and Kenneth Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2463–2516. MR 3165645, DOI 10.1090/S0002-9947-2013-05909-0
- Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight, and David S. Yuen, On the paramodularity of typical abelian surfaces, Algebra Number Theory 13 (2019), no. 5, 1145–1195. MR 3981316, DOI 10.2140/ant.2019.13.1145
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Valeri A. Gritsenko, 24 faces of the Borcherds modular form $\phi _{12}$, 2012.
- Valeri Gritsenko and Klaus Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 3, 461–485. MR 1607981, DOI 10.1017/S0305004197002259
- Valeri A. Gritsenko and Viacheslav V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 201–275. MR 1616929, DOI 10.1142/S0129167X98000117
- Valeri A. Gritsenko, Cris Poor, and David S. Yuen, Antisymmetric paramodular forms of weights 2 and 3. To appear in Int. Math. Res. Not. IMRN.
- Valery Gritsenko, Cris Poor, and David S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164–195. MR 3283174, DOI 10.1016/j.jnt.2014.07.028
- Valeri A. Gritsenko, Nils-Peter Skoruppa, and Don Zagier, Theta blocks, 2019.
- Robert C. Gunning, Introduction to holomorphic functions of several variables. Vol. III, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1990. Homological theory. MR 1059457
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), no. 3, 541–558. MR 979364, DOI 10.1007/BF01393889
- Cris Poor, Ralf Schmidt, and David S. Yuen, Paramodular forms of level 16 and supercuspidal representations, Mosc. J. Comb. Number Theory 8 (2019), no. 4, 289–324. MR 4026540, DOI 10.2140/moscow.2019.8.289
- Cris Poor, Jerry Shurman, and David S. Yuen, Siegel paramodular forms of weight 2 and squarefree level, Int. J. Number Theory 13 (2017), no. 10, 2627–2652. MR 3713095, DOI 10.1142/S1793042117501469
- Cris Poor, Jerry Shurman, and David S. Yuen, Constructing paramodular nonlift newforms via Borcherds products, 2018.
- Cris Poor, Jerry Shurman, and David S. Yuen, Theta block Fourier expansions, Borcherds products and a sequence of Newman and Shanks, Bull. Aust. Math. Soc. 98 (2018), no. 1, 48–59. MR 3819971, DOI 10.1017/S000497271800031X
- Cris Poor and David S. Yuen, The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50 (2013), no. 2, 445–464. MR 3031888, DOI 10.4134/JKMS.2013.50.2.445
- Cris Poor and David S. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015), no. 293, 1401–1438. MR 3315514, DOI 10.1090/S0025-5718-2014-02870-6
- Helmut Reefschläger, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades, Ph.D. Thesis, 1973.
- Nils-Peter Skoruppa and Don Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168–198. MR 972365, DOI 10.1515/crll.1989.393.168
- David S. Yuen, Cris Poor, and Jerry Shurman, Nonlift weight two paramodular eigenform constructions. to appear in J. Korean Math. Soc.
- David S. Yuen, Cris Poor, and Jerry Shurman, All Borcherds product paramodular cusp forms of a given weight and level, 2017. http://www.siegelmodularforms.org/pages/degree2/allbp/.
Bibliographic Information
- Cris Poor
- Affiliation: Department of Mathematics, Fordham University, Bronx, New York 10458
- MR Author ID: 291737
- Email: poor@fordham.edu
- Jerry Shurman
- Affiliation: Department of Mathematics, Reed College, Portland, Oregon 97202
- MR Author ID: 364614
- Email: jerry@reed.edu
- David S. Yuen
- Affiliation: Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822
- MR Author ID: 270719
- Email: yuen888@hawaii.edu
- Received by editor(s): January 12, 2019
- Received by editor(s) in revised form: November 13, 2019, and January 11, 2020
- Published electronically: March 31, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2435-2480
- MSC (2010): Primary 11F46; Secondary 11F55, 11F30, 11F50
- DOI: https://doi.org/10.1090/mcom/3532
- MathSciNet review: 4109573