Completely uniformly distributed sequences based on de Bruijn sequences
HTML articles powered by AMS MathViewer
- by Emilio Almansi and Verónica Becher;
- Math. Comp. 89 (2020), 2537-2551
- DOI: https://doi.org/10.1090/mcom/3534
- Published electronically: April 6, 2020
- HTML | PDF | Request permission
Abstract:
We study a construction published by Donald Knuth in 1965 yielding a completely uniformly distributed sequence of real numbers. Knuth’s work is based on de Bruijn sequences of increasing orders and alphabet sizes, which grow exponentially in each of the successive segments composing the generated sequence. In this work we present a similar, albeit simpler, construction using linearly increasing alphabet sizes, and we give an elementary proof showing that the generated sequence is also completely uniformly distributed. In addition, we present an alternative proof of the same result based on Weyl’s criterion.References
- E. Almansi, Completely Equidistributed Sequences Based on De Bruijn Sequences, Tesis de Licenciatura en Ciencias de la Computación. Director: V. Becher, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, September 2019.
- Verónica Becher and Olivier Carton, Normal numbers and nested perfect necklaces, J. Complexity 54 (2019), 101403, 12. MR 3983214, DOI 10.1016/j.jco.2019.03.003
- Jean Berstel and Dominique Perrin, The origins of combinatorics on words, European J. Combin. 28 (2007), no. 3, 996–1022. MR 2300777, DOI 10.1016/j.ejc.2005.07.019
- N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758–764 = Indagationes Math. 8, 461–467 (1946). MR 18142
- Joel N. Franklin, Deterministic simulation of random processes, Math. Comp. 17 (1963), 28–59. MR 149640, DOI 10.1090/S0025-5718-1963-0149640-3
- Harold Fredricksen and James Maiorana, Necklaces of beads in $k$ colors and $k$-ary de Bruijn sequences, Discrete Math. 23 (1978), no. 3, 207–210. MR 523071, DOI 10.1016/0012-365X(78)90002-X
- Donald E. Knuth, Construction of a random sequence, Nordisk Tidskr. Informationsbehandling (BIT) 5 (1965), 246–250. MR 197434, DOI 10.1007/bf01937504
- N. M. Korobov, On functions with uniformly distributed fractional parts, Doklady Akad. Nauk SSSR (N.S.) 62 (1948), 21–22 (Russian). MR 27012
- N. M. Korobov, Fractional parts of exponential functions, Trudy Mat. Inst. Steklov. 38 (1951), 87–96 (Russian). MR 49245
- N. M. Korobov, Normal periodic systems and their applications to the estimation of sums of fractional parts, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 17–46 (Russian). MR 43146
- N. M. Korobov, On normal periodic systems, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 211–216 (Russian). MR 49248
- N. M. Korobov, On completely uniform distribution and conjunctly normal numbers, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 649–660 (Russian). MR 83522
- N. M. Korobov, Bounds of trigonometric sums involving completely uniformly distributed functions, Dokl. Akad. Nauk SSSR 133, 1011–1014 (Russian); English transl., Soviet Math. Dokl. 1 (1960), 923–926. MR 130527
- N. M. Korobov, Exponential sums and their applications, Mathematics and its Applications (Soviet Series), vol. 80, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the 1989 Russian original by Yu. N. Shakhov. MR 1162539, DOI 10.1007/978-94-015-8032-8
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 419394
- Mordechay B. Levin, Discrepancy estimates of completely uniformly distributed and pseudorandom number sequences, Internat. Math. Res. Notices 22 (1999), 1231–1251. MR 1731474, DOI 10.1155/S1073792899000677
- M. B. Levin, On the discrepancy estimate of normal numbers, Acta Arith. 88 (1999), no. 2, 99–111. MR 1700240, DOI 10.4064/aa-88-2-99-111
- Paul J. McCarthy, Introduction to arithmetical functions, Universitext, Springer-Verlag, New York, 1986. MR 815514, DOI 10.1007/978-1-4613-8620-9
- Harald Niederreiter and Arne Winterhof, Applied number theory, Springer, Cham, 2015. MR 3364863, DOI 10.1007/978-3-319-22321-6
- Frank Ruskey, Carla Savage, and Terry Min Yih Wang, Generating necklaces, J. Algorithms 13 (1992), no. 3, 414–430. MR 1176670, DOI 10.1016/0196-6774(92)90047-G
- I. E. Šparlinskiĭ, Completely uniform distribution, Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979), no. 5, 1330–1333, 1359 (Russian). MR 550116
Bibliographic Information
- Emilio Almansi
- Affiliation: Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- Email: ealmansi@gmail.com
- Verónica Becher
- Affiliation: Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & ICC CONICET, Argentina
- MR Author ID: 368040
- Email: vbecher@dc.uba.ar
- Received by editor(s): September 24, 2019
- Received by editor(s) in revised form: December 29, 2019, and January 4, 2020
- Published electronically: April 6, 2020
- Additional Notes: Supported by Universidad de Buenos Aires and CONICET, Argentina
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2537-2551
- MSC (2010): Primary 11-04, 11K36; Secondary 68-04
- DOI: https://doi.org/10.1090/mcom/3534
- MathSciNet review: 4109577