Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime
HTML articles powered by AMS MathViewer
- by Weizhu Bao, Yongyong Cai and Jia Yin;
- Math. Comp. 89 (2020), 2141-2173
- DOI: https://doi.org/10.1090/mcom/3536
- Published electronically: April 23, 2020
- HTML | PDF | Request permission
Abstract:
We establish error bounds of the Lie-Trotter splitting ($S_1$) and Strang splitting ($S_2$) for the Dirac equation in the nonrelativistic regime in the absence of external magnetic potentials, with a small parameter $0<\varepsilon \leq 1$ inversely proportional to the speed of light. In this regime, the solution propagates waves with $O(\varepsilon ^2)$ wavelength in time. Surprisingly, we find out that the splitting methods exhibit super-resolution, i.e., the methods can capture the solutions accurately even if the time step size $\tau$ is independent of $\varepsilon$, while the wavelength in time is at $O(\varepsilon ^2)$. $S_1$ shows $1/2$ order convergence uniformly with respect to $\varepsilon$, by establishing that there are two independent error bounds $\tau + \varepsilon$ and $\tau + \tau /\varepsilon$. Moreover, if $\tau$ is nonresonant, i.e., $\tau$ is away from a certain region determined by $\varepsilon$, $S_1$ would yield an improved uniform first order $O(\tau )$ error bound. In addition, we show $S_2$ is uniformly convergent with $1/2$ order rate for general time step size $\tau$ and uniformly convergent with $3/2$ order rate for nonresonant time step size. Finally, numerical examples are reported to validate our findings.References
- D. A. Abanin, S. V. Morozov, L. A. Ponomarenko, R. V. Gorbachev, A. S. Mayorov, M. I. Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov, L. S. Levitov, and A. K. Geim, Giant nonlocality near the Dirac point in graphene, Science 332 (2011), 328-330.
- Xavier Antoine, Weizhu Bao, and Christophe Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun. 184 (2013), no. 12, 2621–2633. MR 3128901, DOI 10.1016/j.cpc.2013.07.012
- X. Antoine and E. Lorin, Computational performance of simple and efficient sequential and parallel Dirac equation solvers, Comput. Phys. Commun. 220 (2017), 150–172. MR 3695204, DOI 10.1016/j.cpc.2017.07.001
- X. Antoine, E. Lorin, J. Sater, F. Fillion-Gourdeau, and A. D. Bandrauk, Absorbing boundary conditions for relativistic quantum mechanics equations, J. Comput. Phys. 277 (2014), 268–304. MR 3254233, DOI 10.1016/j.jcp.2014.07.037
- Philipp Bader, Arieh Iserles, Karolina Kropielnicka, and Pranav Singh, Effective approximation for the semiclassical Schrödinger equation, Found. Comput. Math. 14 (2014), no. 4, 689–720. MR 3230012, DOI 10.1007/s10208-013-9182-8
- Weizhu Bao, Yongyong Cai, Xiaowei Jia, and Qinglin Tang, A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 54 (2016), no. 3, 1785–1812. MR 3511357, DOI 10.1137/15M1032375
- Weizhu Bao, Yongyong Cai, Xiaowei Jia, and Qinglin Tang, Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput. 71 (2017), no. 3, 1094–1134. MR 3640674, DOI 10.1007/s10915-016-0333-3
- WeiZhu Bao, YongYong Cai, XiaoWei Jia, and Jia Yin, Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime, Sci. China Math. 59 (2016), no. 8, 1461–1494. MR 3528498, DOI 10.1007/s11425-016-0272-y
- Weizhu Bao, Shi Jin, and Peter A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys. 175 (2002), no. 2, 487–524. MR 1880116, DOI 10.1006/jcph.2001.6956
- Weizhu Bao, Shi Jin, and Peter A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput. 25 (2003), no. 1, 27–64. MR 2047194, DOI 10.1137/S1064827501393253
- Weizhu Bao and Xiang-Gui Li, An efficient and stable numerical method for the Maxwell-Dirac system, J. Comput. Phys. 199 (2004), no. 2, 663–687. MR 2091910, DOI 10.1016/j.jcp.2004.03.003
- Weizhu Bao and Fangfang Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput. 26 (2005), no. 3, 1057–1088. MR 2126126, DOI 10.1137/030600941
- Weizhu Bao, Fangfang Sun, and G. W. Wei, Numerical methods for the generalized Zakharov system, J. Comput. Phys. 190 (2003), no. 1, 201–228. MR 2046763, DOI 10.1016/S0021-9991(03)00271-7
- Weizhu Bao and Jia Yin, A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation, Res. Math. Sci. 6 (2019), no. 1, Paper No. 11, 35. MR 3891853, DOI 10.1007/s40687-018-0173-x
- Philippe Bechouche, Norbert J. Mauser, and Frédéric Poupaud, (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field, Comm. Math. Phys. 197 (1998), no. 2, 405–425. MR 1652738, DOI 10.1007/s002200050457
- O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, Dirac equation for cold atoms in artificial curved spacetimes, New J. Phys. 13 (2011), 035002.
- Y. Cai and Y. Wang, (Semi)-nonrelativistic limits of the nonlinear Dirac equations, Journal of Mathematical Study, to appear.
- Yongyong Cai and Yan Wang, Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 57 (2019), no. 4, 1602–1624. MR 3978485, DOI 10.1137/18M121931X
- Erich Carelli, Erika Hausenblas, and Andreas Prohl, Time-splitting methods to solve the stochastic incompressible Stokes equation, SIAM J. Numer. Anal. 50 (2012), no. 6, 2917–2939. MR 3022248, DOI 10.1137/100819436
- Rémi Carles, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit, SIAM J. Numer. Anal. 51 (2013), no. 6, 3232–3258. MR 3138106, DOI 10.1137/120892416
- Rémi Carles and Clément Gallo, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity, Numer. Math. 136 (2017), no. 1, 315–342. MR 3632926, DOI 10.1007/s00211-016-0841-y
- A. Das, General solutions of Maxwell-Dirac equations in $(1+1)$-dimensional space-time and a spatially confined solution, J. Math. Phys. 34 (1993), no. 9, 3986–3999. MR 1233251, DOI 10.1063/1.530019
- A. Das and D. Kay, A class of exact plane wave solutions of the Maxwell-Dirac equations, J. Math. Phys. 30 (1989), no. 10, 2280–2284. MR 1016296, DOI 10.1063/1.528555
- Stéphane Descombes and Mechthild Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime, BIT 50 (2010), no. 4, 729–749. MR 2739463, DOI 10.1007/s10543-010-0282-4
- P. A. M. Dirac, An extensible model of the electron, Proc. Roy. Soc. London Ser. A 268 (1962), 57–67. MR 139402, DOI 10.1098/rspa.1962.0124
- Maria J. Esteban and Eric Séré, Existence and multiplicity of solutions for linear and nonlinear Dirac problems, Partial differential equations and their applications (Toronto, ON, 1995) CRM Proc. Lecture Notes, vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 107–118. MR 1479240, DOI 10.1090/crmp/012/08
- Di Fang, Shi Jin, and Christof Sparber, An efficient time-splitting method for the Ehrenfest dynamics, Multiscale Model. Simul. 16 (2018), no. 2, 900–921. MR 3802265, DOI 10.1137/17M1112789
- Charles L. Fefferman and Michael I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc. 25 (2012), no. 4, 1169–1220. MR 2947949, DOI 10.1090/S0894-0347-2012-00745-0
- F. Fillion-Gourdeau, E. Lorin and A. D. Bandrauk, Resonantly enhanced pair production in a simple diatomic model, Phys. Rev. Lett. 110 (2013), 013002.
- Ludwig Gauckler, On a splitting method for the Zakharov system, Numer. Math. 139 (2018), no. 2, 349–379. MR 3802675, DOI 10.1007/s00211-017-0942-2
- F. Gesztesy, H. Grosse, and B. Thaller, A rigorous approach to relativistic corrections of bound state energies for spin-${1\over 2}$ particles, Ann. Inst. H. Poincaré Phys. Théor. 40 (1984), no. 2, 159–174 (English, with French summary). MR 747200
- Leonard Gross, The Cauchy problem for the coupled Maxwell and Dirac equations, Comm. Pure Appl. Math. 19 (1966), 1–15. MR 190520, DOI 10.1016/S0079-8169(08)61684-0
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations. MR 1904823, DOI 10.1007/978-3-662-05018-7
- Zhongyi Huang, Shi Jin, Peter A. Markowich, Christof Sparber, and Chunxiong Zheng, A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys. 208 (2005), no. 2, 761–789. MR 2144737, DOI 10.1016/j.jcp.2005.02.026
- W. Hunziker, On the nonrelativistic limit of the Dirac theory, Comm. Math. Phys. 40 (1975), 215–222. MR 363275
- Tobias Jahnke and Christian Lubich, Error bounds for exponential operator splittings, BIT 40 (2000), no. 4, 735–744. MR 1799313, DOI 10.1023/A:1022396519656
- Shi Jin, Peter A. Markowich, and Chunxiong Zheng, Numerical simulation of a generalized Zakharov system, J. Comput. Phys. 201 (2004), no. 1, 376–395. MR 2098862, DOI 10.1016/j.jcp.2004.06.001
- Shi Jin and Chunxiong Zheng, A time-splitting spectral method for the generalized Zakharov system in multi-dimensions, J. Sci. Comput. 26 (2006), no. 2, 127–149. MR 2219371, DOI 10.1007/s10915-005-4929-2
- Shu-Cun Li, Xiang-Gui Li, and Fang-Yuan Shi, Time-splitting methods with charge conservation for the nonlinear Dirac equation, Numer. Methods Partial Differential Equations 33 (2017), no. 5, 1582–1602. MR 3683523, DOI 10.1002/num.22154
- Christian Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), no. 264, 2141–2153. MR 2429878, DOI 10.1090/S0025-5718-08-02101-7
- Robert I. McLachlan and G. Reinout W. Quispel, Splitting methods, Acta Numer. 11 (2002), 341–434. MR 2009376, DOI 10.1017/S0962492902000053
- A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009), 109-162.
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), 666-669.
- J. W. Nraun, Q. Su, and R. Grobe, Numerical approach to solve the time-dependent Dirac equation, Phys. Rev. A 59 (1999), 604-612.
- P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37 (1996), 193-263.
- Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506–517. MR 235754, DOI 10.1137/0705041
- Mechthild Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 46 (2008), no. 4, 2022–2038. MR 2399406, DOI 10.1137/060674636
- H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10 (1959), 545–551. MR 108732, DOI 10.1090/S0002-9939-1959-0108732-6
- L. Verlet, Computer ‘experiments’ on classical fluids, I: Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159 (1967), 98-103.
- Hao Wu, Zhongyi Huang, Shi Jin, and Dongsheng Yin, Gaussian beam methods for the Dirac equation in the semi-classical regime, Commun. Math. Sci. 10 (2012), no. 4, 1301–1315. MR 2955409, DOI 10.4310/CMS.2012.v10.n4.a14
Bibliographic Information
- Weizhu Bao
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- MR Author ID: 354327
- Email: matbaowz@nus.edu.sg
- Yongyong Cai
- Affiliation: School of Mathematical Sciences, Beijing Normal University, 100875, People’s Republic of China; and Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
- MR Author ID: 819002
- Email: yongyong.cai@bnu.edu.cn
- Jia Yin
- Affiliation: NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456
- MR Author ID: 1169777
- Email: matyinj@nus.edu.sg
- Received by editor(s): February 21, 2019
- Received by editor(s) in revised form: December 4, 2019, and January 18, 2020
- Published electronically: April 23, 2020
- Additional Notes: This work was partially done when the first author was visiting the Courant Institute for Mathematical Sciences in 2018. Part of this work was done when the authors visited the Institute for Mathematical Sciences, National University of Singapore, in 2019.
The first and third authors acknowledge support from the Ministry of Education of Singapore grant R-146-000-247-114
The second author acknowledges support from NSFC grant No. 11771036 and 91630204. - © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2141-2173
- MSC (2010): Primary 35Q41, 65M70, 65N35, 81Q05
- DOI: https://doi.org/10.1090/mcom/3536
- MathSciNet review: 4109563