## Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators

HTML articles powered by AMS MathViewer

- by
Chenzhe Diao and Bin Han
**HTML**| PDF - Math. Comp.
**89**(2020), 2867-2911 Request permission

## Abstract:

As a generalization of orthonormal wavelets in $L_2({\mathbb {R}})$, tightframelets (also called tight wavelet frames) are of importance in wavelet analysis and applied sciences due to their many desirable properties in applications such as image processing and numerical algorithms. Tight framelets are often derived from particular refinable functions satisfying certain stringent conditions. Consequently, a large family of refinable functions cannot be used to construct tight framelets. This motivates us to introduce the notion of a quasi-tight framelet, which is a dual framelet but behaves almost like a tight framelet. It turns out that the study of quasi-tight framelets is intrinsically linked to the problem of the generalized matrix spectral factorization for matrices of Laurent polynomials. In this paper, we provide a systematic investigation on the generalized matrix spectral factorization problem and compactly supported quasi-tight framelets. As an application of our results on generalized matrix spectral factorization for matrices of Laurent polynomials, we prove in this paper that from any arbitrary compactly supported refinable function in $L_2({\mathbb {R}})$, we can always construct a compactly supported one-dimensional quasi-tight framelet having the minimum number of generators and the highest possible order of vanishing moments. Our proofs are constructive and supplemented by step-by-step algorithms. Several examples of quasi-tight framelets will be provided to illustrate the theoretical results and algorithms developed in this paper.## References

- Charles K. Chui and Wenjie He,
*Compactly supported tight frames associated with refinable functions*, Appl. Comput. Harmon. Anal.**8**(2000), no. 3, 293–319. MR**1754930**, DOI 10.1006/acha.2000.0301 - Charles K. Chui, Wenjie He, and Joachim Stöckler,
*Compactly supported tight and sibling frames with maximum vanishing moments*, Appl. Comput. Harmon. Anal.**13**(2002), no. 3, 224–262. MR**1942743**, DOI 10.1016/S1063-5203(02)00510-9 - W. A. Coppel,
*Linear systems*, Notes on Pure Mathematics, No. 6, Australian National University, Department of Pure Mathematics, S.G.S., Department of Mathematics, I.A.S., Canberra, 1972. A course of lectures given at the 12th Summer Research Institute of the Australian Mathematical Society (January/February 1972). MR**0437142** - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - Ingrid Daubechies and Bin Han,
*Pairs of dual wavelet frames from any two refinable functions*, Constr. Approx.**20**(2004), no. 3, 325–352. MR**2057532**, DOI 10.1007/s00365-004-0567-4 - Ingrid Daubechies, Bin Han, Amos Ron, and Zuowei Shen,
*Framelets: MRA-based constructions of wavelet frames*, Appl. Comput. Harmon. Anal.**14**(2003), no. 1, 1–46. MR**1971300**, DOI 10.1016/S1063-5203(02)00511-0 - Dragomir Ž. Djoković,
*Hermitian matrices over polynomial rings*, J. Algebra**43**(1976), no. 2, 359–374. MR**437565**, DOI 10.1016/0021-8693(76)90119-8 - Bin Dong and Zuowei Shen,
*MRA-based wavelet frames and applications*, Mathematics in image processing, IAS/Park City Math. Ser., vol. 19, Amer. Math. Soc., Providence, RI, 2013, pp. 9–158. MR**3098080**, DOI 10.1090/pcms/019/02 - Bin Dong and Zuowei Shen,
*Pseudo-splines, wavelets and framelets*, Appl. Comput. Harmon. Anal.**22**(2007), no. 1, 78–104. MR**2287386**, DOI 10.1016/j.acha.2006.04.008 - Lasha Ephremidze, Gigla Janashia, and Edem Lagvilava,
*A simple proof of the matrix-valued Fejér-Riesz theorem*, J. Fourier Anal. Appl.**15**(2009), no. 1, 124–127. MR**2491029**, DOI 10.1007/s00041-008-9051-z - I. Gohberg, P. Lancaster, and L. Rodman,
*Spectral analysis of selfadjoint matrix polynomials*, Ann. of Math. (2)**112**(1980), no. 1, 33–71. MR**584074**, DOI 10.2307/1971320 - I. Gohberg, P. Lancaster, and L. Rodman,
*Factorization of selfadjoint matrix polynomials with constant signature*, Linear and Multilinear Algebra**11**(1982), no. 3, 209–224. MR**649765**, DOI 10.1080/03081088208817445 - I. Gohberg, P. Lancaster, and L. Rodman,
*Matrix polynomials*, Classics in Applied Mathematics, vol. 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. Reprint of the 1982 original [ MR0662418]. MR**3396732**, DOI 10.1137/1.9780898719024 - Bin Han,
*On dual wavelet tight frames*, Appl. Comput. Harmon. Anal.**4**(1997), no. 4, 380–413. MR**1474096**, DOI 10.1006/acha.1997.0217 - Bin Han,
*Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix*, J. Comput. Appl. Math.**155**(2003), no. 1, 43–67. Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001). MR**1992289**, DOI 10.1016/S0377-0427(02)00891-9 - Bin Han,
*Nonhomogeneous wavelet systems in high dimensions*, Appl. Comput. Harmon. Anal.**32**(2012), no. 2, 169–196. MR**2880278**, DOI 10.1016/j.acha.2011.04.002 - Bin Han,
*Symmetric tight framelet filter banks with three high-pass filters*, Appl. Comput. Harmon. Anal.**37**(2014), no. 1, 140–161. MR**3202306**, DOI 10.1016/j.acha.2013.11.001 - Bin Han,
*Algorithm for constructing symmetric dual framelet filter banks*, Math. Comp.**84**(2015), no. 292, 767–801. MR**3290963**, DOI 10.1090/S0025-5718-2014-02856-1 - Bin Han,
*Framelets and wavelets*, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2017. Algorithms, analysis, and applications. MR**3752124**, DOI 10.1007/978-3-319-68530-4 - Bin Han and Qun Mo,
*Symmetric MRA tight wavelet frames with three generators and high vanishing moments*, Appl. Comput. Harmon. Anal.**18**(2005), no. 1, 67–93. MR**2110513**, DOI 10.1016/j.acha.2004.09.001 - Bin Han and Zhenpeng Zhao,
*Tensor product complex tight framelets with increasing directionality*, SIAM J. Imaging Sci.**7**(2014), no. 2, 997–1034. MR**3206985**, DOI 10.1137/130928558 - Douglas P. Hardin, Thomas A. Hogan, and Qiyu Sun,
*The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces*, Adv. Comput. Math.**20**(2004), no. 4, 367–384. MR**2032284**, DOI 10.1023/A:1027389826705 - Qingtang Jiang,
*Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators*, Adv. Comput. Math.**18**(2003), no. 2-4, 247–268. Frames. MR**1968121**, DOI 10.1023/A:1021339707805 - Qingtang Jiang and Zuowei Shen,
*Tight wavelet frames in low dimensions with canonical filters*, J. Approx. Theory**196**(2015), 55–78. MR**3351529**, DOI 10.1016/j.jat.2015.02.008 - Tosio Kato,
*Perturbation theory for linear operators*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR**1335452**, DOI 10.1007/978-3-642-66282-9 - B. D. Ljubačevskiĭ,
*Factorization of symmetric matrices with elements belonging to a ring with involution. I, II*, Sibirsk. Mat. Ž.**14**(1973), 337–356, 461–462; ibid. 14 (1973), 609–623, 694 (Russian). MR**0360642** - B. D. Ljubačevskiĭ,
*Factorization of symmetric matrices with elements belonging to a ring with involution. I, II*, Sibirsk. Mat. Ž.**14**(1973), 337–356, 461–462; ibid. 14 (1973), 609–623, 694 (Russian). MR**0360642** - A. C. M. Ran and L. Rodman,
*Factorization of matrix polynomials with symmetries*, SIAM J. Matrix Anal. Appl.**15**(1994), no. 3, 845–864. MR**1282698**, DOI 10.1137/S0895479892235502 - André Ran and Peter Zizler,
*On self-adjoint matrix polynomials with constant signature*, Linear Algebra Appl.**259**(1997), 133–153. MR**1450534**, DOI 10.1016/S0024-3795(96)00246-7 - Marvin Rosenblum and James Rovnyak,
*Hardy classes and operator theory*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR**822228** - Zuowei Shen,
*Wavelet frames and image restorations*, Proceedings of the International Congress of Mathematicians. Volume IV, Hindustan Book Agency, New Delhi, 2010, pp. 2834–2863. MR**2827995** - Amos Ron and Zuowei Shen,
*Affine systems in $L_2(\mathbf R^d)$: the analysis of the analysis operator*, J. Funct. Anal.**148**(1997), no. 2, 408–447. MR**1469348**, DOI 10.1006/jfan.1996.3079 - Ivan W. Selesnick,
*Smooth wavelet tight frames with zero moments*, Appl. Comput. Harmon. Anal.**10**(2001), no. 2, 163–181. MR**1815726**, DOI 10.1006/acha.2000.0332 - D. C. Youla,
*On the factorization of rational matrices*, IRE Trans.**IT-7**(1961), 172–189. MR**0130266**, DOI 10.1109/tit.1961.1057636

## Additional Information

**Chenzhe Diao**- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: diao@ualberta.ca
**Bin Han**- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 610426
- Email: bhan@ualberta.ca
- Received by editor(s): June 9, 2018
- Published electronically: June 5, 2020
- Additional Notes: This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC)
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp.
**89**(2020), 2867-2911 - MSC (2010): Primary 42C40, 42C15, 47A68, 41A15, 65D07
- DOI: https://doi.org/10.1090/mcom/3523
- MathSciNet review: 4136550