Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs
HTML articles powered by AMS MathViewer
- by Kristin Kirchner;
- Math. Comp. 89 (2020), 2801-2845
- DOI: https://doi.org/10.1090/mcom/3524
- Published electronically: May 26, 2020
- HTML | PDF | Request permission
Abstract:
Numerical methods for stochastic partial differential equations typically estimate moments of the solution from sampled paths. Instead, we shall directly target the deterministic equations satisfied by the mean and the spatio-temporal covariance structure of the solution process.
In the first part, we focus on stochastic ordinary differential equations. For the canonical examples with additive noise (Ornstein–Uhlenbeck process) or multiplicative noise (geometric Brownian motion) we derive these deterministic equations in variational form and discuss their well-posedness in detail. Notably, the second moment equation in the multiplicative case is naturally posed on projective–injective tensor product spaces as trial–test spaces. We then propose numerical approximations based on Petrov–Galerkin discretizations with tensor product piecewise polynomials and analyze their stability and convergence in the natural tensor norms.
In the second part, we proceed with parabolic stochastic partial differential equations with affine multiplicative noise. We prove well-posedness of the deterministic variational problem for the second moment, improving an earlier result. We then propose conforming space-time Petrov–Galerkin discretizations, which we show to be stable and quasi-optimal.
In both parts, the outcomes are validated by numerical examples.
References
- R. Andreev, Quasi-optimality of approximate solutions in normed vector spaces, Tech. Report hal-01338040, HAL, 2016.
- Roman Andreev and Julia Schweitzer, Conditional space-time stability of collocation Runge-Kutta for parabolic evolution equations, Electron. Trans. Numer. Anal. 41 (2014), 62–80. MR 3207905
- Roman Andreev and Christine Tobler, Multilevel preconditioning and low-rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs, Numer. Linear Algebra Appl. 22 (2015), no. 2, 317–337. MR 3313261, DOI 10.1002/nla.1951
- Jean-Pierre Aubin, Applied functional analysis, 2nd ed., Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2000. With exercises by Bernard Cornet and Jean-Michel Lasry; Translated from the French by Carole Labrousse. MR 1782330, DOI 10.1002/9781118032725
- I. Babuška, Error-bounds for finite element method, Numer. Math. 16 (1971), no. 4, 322–333.
- Ivo Babuška and Tadeusz Janik, The $h$-$p$ version of the finite element method for parabolic equations. I. The $p$-version in time, Numer. Methods Partial Differential Equations 5 (1989), no. 4, 363–399. MR 1107894, DOI 10.1002/num.1690050407
- Ivo Babuška and Tadeusz Janik, The $h$-$p$ version of the finite element method for parabolic equations. II. The $h$-$p$ version in time, Numer. Methods Partial Differential Equations 6 (1990), no. 4, 343–369. MR 1087250, DOI 10.1002/num.1690060406
- Markus Bachmayr, Reinhold Schneider, and André Uschmajew, Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math. 16 (2016), no. 6, 1423–1472. MR 3579714, DOI 10.1007/s10208-016-9317-9
- Andrea Barth, Annika Lang, and Christoph Schwab, Multilevel Monte Carlo method for parabolic stochastic partial differential equations, BIT 53 (2013), no. 1, 3–27. MR 3029293, DOI 10.1007/s10543-012-0401-5
- Peter Benner, Serkan Gugercin, and Karen Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (2015), no. 4, 483–531. MR 3419868, DOI 10.1137/130932715
- J. Charrier, R. Scheichl, and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Numer. Anal. 51 (2013), no. 1, 322–352. MR 3033013, DOI 10.1137/110853054
- K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci. 14 (2011), no. 1, 3–15. MR 2835612, DOI 10.1007/s00791-011-0160-x
- Albert Cohen and Ronald DeVore, Approximation of high-dimensional parametric PDEs, Acta Numer. 24 (2015), 1–159. MR 3349307, DOI 10.1017/S0962492915000033
- Josef Dick, Frances Y. Kuo, and Ian H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013), 133–288. MR 3038697, DOI 10.1017/S0962492913000044
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Klaus Floret, Natural norms on symmetric tensor products of normed spaces, Proceedings of the Second International Workshop on Functional Analysis (Trier, 1997), 1997, pp. 153–188 (1999). MR 1749787
- Michael B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607–617. MR 2436856, DOI 10.1287/opre.1070.0496
- Michael B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015), 259–328. MR 3349310, DOI 10.1017/S096249291500001X
- Michael B. Giles and Benjamin J. Waterhouse, Multilevel quasi-Monte Carlo path simulation, Advanced financial modelling, Radon Ser. Comput. Appl. Math., vol. 8, Walter de Gruyter, Berlin, 2009, pp. 165–181. MR 2648461, DOI 10.1515/9783110213140.165
- I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, Ch. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients, Numer. Math. 131 (2015), no. 2, 329–368. MR 3385149, DOI 10.1007/s00211-014-0689-y
- I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications, J. Comput. Phys. 230 (2011), no. 10, 3668–3694. MR 2783812, DOI 10.1016/j.jcp.2011.01.023
- Lars Grasedyck, Daniel Kressner, and Christine Tobler, A literature survey of low-rank tensor approximation techniques, GAMM-Mitt. 36 (2013), no. 1, 53–78. MR 3095914, DOI 10.1002/gamm.201310004
- Wolfgang Hackbusch, Numerical tensor calculus, Acta Numer. 23 (2014), 651–742. MR 3202243, DOI 10.1017/S0962492914000087
- Lukas Herrmann and Christoph Schwab, QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights, Numer. Math. 141 (2019), no. 1, 63–102. MR 3903203, DOI 10.1007/s00211-018-0991-1
- Kristin Kirchner, Annika Lang, and Stig Larsson, Covariance structure of parabolic stochastic partial differential equations with multiplicative Lévy noise, J. Differential Equations 262 (2017), no. 12, 5896–5927. MR 3624543, DOI 10.1016/j.jde.2017.02.021
- Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374, DOI 10.1007/978-3-662-12616-5
- Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal. 50 (2012), no. 6, 3351–3374. MR 3024159, DOI 10.1137/110845537
- Frances Y. Kuo, Christoph Schwab, and Ian H. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients, Found. Comput. Math. 15 (2015), no. 2, 411–449. MR 3320930, DOI 10.1007/s10208-014-9237-5
- Annika Lang, Stig Larsson, and Christoph Schwab, Covariance structure of parabolic stochastic partial differential equations, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 2, 351–364. MR 3327510, DOI 10.1007/s40072-013-0012-4
- Annika Lang and Andreas Petersson, Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations, Math. Comput. Simulation 143 (2018), 99–113. MR 3698219, DOI 10.1016/j.matcom.2017.05.002
- Michel Loève, Probability theory. II, 4th ed., Graduate Texts in Mathematics, Vol. 46, Springer-Verlag, New York-Heidelberg, 1978. MR 651018, DOI 10.1007/978-1-4612-6257-2
- J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans. Roy. Soc. A 209 (1909), 415–446.
- Bernt Øksendal, Stochastic differential equations, 6th ed., Universitext, Springer-Verlag, Berlin, 2003. An introduction with applications. MR 2001996, DOI 10.1007/978-3-642-14394-6
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503, DOI 10.1017/CBO9780511574757.003
- S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Encyclopedia of Mathematics and its Applications, vol. 113, Cambridge University Press, Cambridge, 2007. An evolution equation approach. MR 2356959, DOI 10.1017/CBO9780511721373
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 493419
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, NJ, 1950. MR 36935
- Christoph Schwab and Claude Jeffrey Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer. 20 (2011), 291–467. MR 2805155, DOI 10.1017/S0962492911000055
- Christoph Schwab and Radu Alexandru Todor, Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys. 217 (2006), no. 1, 100–122. MR 2250527, DOI 10.1016/j.jcp.2006.01.048
- Ari Stern, Banach space projections and Petrov-Galerkin estimates, Numer. Math. 130 (2015), no. 1, 125–133. MR 3322362, DOI 10.1007/s00211-014-0658-5
- Rob Stevenson, Adaptive wavelet methods for solving operator equations: an overview, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 543–597. MR 2648381, DOI 10.1007/978-3-642-03413-8_{1}3
- A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients, Numer. Math. 125 (2013), no. 3, 569–600. MR 3117512, DOI 10.1007/s00211-013-0546-4
- R. A. Todor, Sparse perturbation algorithms for elliptic PDE’s with stochastic data, Ph.D. thesis, ETH Zürich, 2005, ETH Diss. Nr. 16192.
- Hans-Werner van Wyk, Max Gunzburger, John Burkhardt, and Miroslav Stoyanov, Power-law noises over general spatial domains and on nonstandard meshes, SIAM/ASA J. Uncertain. Quantif. 3 (2015), no. 1, 296–319. MR 3338005, DOI 10.1137/140985433
- Jinchao Xu and Ludmil Zikatanov, Some observations on Babuška and Brezzi theories, Numer. Math. 94 (2003), no. 1, 195–202. MR 1971217, DOI 10.1007/s002110100308
Bibliographic Information
- Kristin Kirchner
- Affiliation: Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland
- Address at time of publication: Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
- MR Author ID: 1188840
- Email: k.kirchner@tudelft.nl
- Received by editor(s): August 24, 2018
- Received by editor(s) in revised form: July 8, 2019
- Published electronically: May 26, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2801-2845
- MSC (2010): Primary 35R60, 60H15, 65C30, 65M12, 65M60
- DOI: https://doi.org/10.1090/mcom/3524
- MathSciNet review: 4136548