The Magnus expansion and post-Lie algebras
HTML articles powered by AMS MathViewer
- by Charles Curry, Kurusch Ebrahimi-Fard and Brynjulf Owren;
- Math. Comp. 89 (2020), 2785-2799
- DOI: https://doi.org/10.1090/mcom/3541
- Published electronically: May 26, 2020
- HTML | PDF | Request permission
Abstract:
We relate the classical and post-Lie Magnus expansions. Intertwining algebraic and geometric arguments allows us to place the classical Magnus expansion in the context of Lie group integrators.References
- A. A. Agračev and R. V. Gamkrelidze, Chronological algebras and nonstationary vector fields, Problems in geometry, Vol. 11 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, pp. 135–176, 243 (Russian). MR 579930
- R. Bandiera and F. Schätz, Eulerian idempotent, pre-Lie logarithm and combinatorics of trees, arXiv:1702.08907.
- S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009), no. 5-6, 151–238. MR 2494199, DOI 10.1016/j.physrep.2008.11.001
- J. C. Butcher, The numerical analysis of ordinary differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR 878564
- Pierre Cartier, Vinberg algebras, Lie groups and combinatorics, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 107–126. MR 2732048
- Elena Celledoni, Håkon Marthinsen, and Brynjulf Owren, An introduction to Lie group integrators—basics, new developments and applications. part B, J. Comput. Phys. 257 (2014), no. part B, 1040–1061. MR 3133432, DOI 10.1016/j.jcp.2012.12.031
- Elena Celledoni, Brynjulf Owren, and Yajuan Sun, The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method, Math. Comp. 83 (2014), no. 288, 1689–1700. MR 3194126, DOI 10.1090/S0025-5718-2014-02805-6
- F. Chapoton, Rooted trees and an exponential-like series, arXiv:math/0209104
- Frédéric Chapoton, A rooted-trees $q$-series lifting a one-parameter family of Lie idempotents, Algebra Number Theory 3 (2009), no. 6, 611–636. MR 2579388, DOI 10.2140/ant.2009.3.611
- Frédéric Chapoton and Frédéric Patras, Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula, Internat. J. Algebra Comput. 23 (2013), no. 4, 853–861. MR 3078060, DOI 10.1142/S0218196713400134
- Philippe Chartier, Ernst Hairer, and Gilles Vilmart, Algebraic structures of B-series, Found. Comput. Math. 10 (2010), no. 4, 407–427. MR 2657947, DOI 10.1007/s10208-010-9065-1
- Charles Curry, Kurusch Ebrahimi-Fard, and Hans Munthe-Kaas, What is a post-Lie algebra and why is it useful in geometric integration, Numerical mathematics and advanced applications—ENUMATH 2017, Lect. Notes Comput. Sci. Eng., vol. 126, Springer, Cham, 2019, pp. 429–437. MR 3976999, DOI 10.1007/978-3-319-96415-7_{3}8
- Kurusch Ebrahimi-Fard, Alexander Lundervold, and Hans Z. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (2015), no. 4, 1139–1165. MR 3350091
- Kurusch Ebrahimi-Fard, Alexander Lundervold, Igor Mencattini, and Hans Z. Munthe-Kaas, Post-Lie algebras and isospectral flows, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 093, 16. MR 3426055, DOI 10.3842/SIGMA.2015.093
- Kurusch Ebrahimi-Fard, Igor Mencattini, and Hans Munthe-Kaas, Post-Lie algebras and factorization theorems, J. Geom. Phys. 119 (2017), 19–33. MR 3661521, DOI 10.1016/j.geomphys.2017.04.007
- Kurusch Ebrahimi-Fard and Igor Mencattini, Post-Lie algebras, factorization theorems and isospectral flows, Discrete mechanics, geometric integration and Lie-Butcher series, Springer Proc. Math. Stat., vol. 267, Springer, Cham, 2018, pp. 231–285. MR 3883647, DOI 10.1007/978-3-030-01397-4_{7}
- Kurusch Ebrahimi-Fard and Dominique Manchon, A Magnus- and Fer-type formula in dendriform algebras, Found. Comput. Math. 9 (2009), no. 3, 295–316. MR 2496553, DOI 10.1007/s10208-008-9023-3
- Irving J. Epstein, Conditions for a matrix to commute with its integral, Proc. Amer. Math. Soc. 14 (1963), 266–270. MR 151670, DOI 10.1090/S0002-9939-1963-0151670-4
- Mahdi J. Hasan Al-Kaabi, Monomial bases for free pre-Lie algebras, Sém. Lothar. Combin. 71 (2013/14), Art. B71b, 19. MR 3262181
- Mahdi J. Hasan Al-Kaabi, Dominique Manchon, and Frédéric Patras, Monomial bases and pre-Lie structure for free Lie algebras, J. Lie Theory 28 (2018), no. 4, 941–967. MR 3818652
- Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna, Lie-group methods, Acta numerica, 2000, Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 215–365. MR 1883629, DOI 10.1017/S0962492900002154
- Arieh Iserles, Expansions that grow on trees, Notices Amer. Math. Soc. 49 (2002), no. 4, 430–440. MR 1892640
- Hans Z. Munthe-Kaas and Alexander Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math. 13 (2013), no. 4, 583–613. MR 3085679, DOI 10.1007/s10208-013-9167-7
- Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 649–673. MR 67873, DOI 10.1002/cpa.3160070404
- Dominique Manchon, A short survey on pre-Lie algebras, Noncommutative geometry and physics: renormalisation, motives, index theory, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2011, pp. 89–102. MR 2839054, DOI 10.4171/008-1/3
- Eckhard Meinrenken, Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. MR 3052646, DOI 10.1007/978-3-642-36216-3
- Bogdan Mielnik and Jerzy Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann. Inst. H. Poincaré Sect. A (N.S.) 12 (1970), 215–254. MR 273922
- B. Minchev, Lie group integrators with nonautonomous frozen vector fields, Int. J. Comput. Sci. Eng. 3(4) (2007).
- Hans Munthe-Kaas and Brynjulf Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 957–981. MR 1694699, DOI 10.1098/rsta.1999.0361
- A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6 (2006), no. 4, 387–426. MR 2271214, DOI 10.1007/s10208-003-0111-0
- J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory 2 (2008), no. 1, 147–167. MR 2434170, DOI 10.1017/is008001011jkt037
- M. M. Postnikov, Geometry VI, Encyclopaedia of Mathematical Sciences, vol. 91, Springer-Verlag, Berlin, 2001. Riemannian geometry; Translated from the 1998 Russian edition by S. A. Vakhrameev. MR 1824853, DOI 10.1007/978-3-662-04433-9
- Wensheng Tang and Yajuan Sun, Construction of Runge-Kutta type methods for solving ordinary differential equations, Appl. Math. Comput. 234 (2014), 179–191. MR 3190530, DOI 10.1016/j.amc.2014.02.042
- R. M. Wilcox, Exponential operators and parameter differentiation in quantum physics, J. Mathematical Phys. 8 (1967), 962–982. MR 234689, DOI 10.1063/1.1705306
Bibliographic Information
- Charles Curry
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- MR Author ID: 1076495
- Email: charles.curry@ntnu.no
- Kurusch Ebrahimi-Fard
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- MR Author ID: 672304
- Email: kurusch.ebrahimi-fard@ntnu.no
- Brynjulf Owren
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- MR Author ID: 292686
- Email: brynjulf.owren@ntnu.no
- Received by editor(s): August 20, 2018
- Received by editor(s) in revised form: July 12, 2019, and February 18, 2020
- Published electronically: May 26, 2020
- Additional Notes: This research was supported by The Research Council of Norway, the FRIPRO programme, grant No. 231632 and by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska–Curie grant agreement No. 691070.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2785-2799
- MSC (2010): Primary 34A26, 34G10, 65L05; Secondary 17B35
- DOI: https://doi.org/10.1090/mcom/3541
- MathSciNet review: 4136547