Computing isomorphisms between lattices
HTML articles powered by AMS MathViewer
- by Tommy Hofmann and Henri Johnston;
- Math. Comp. 89 (2020), 2931-2963
- DOI: https://doi.org/10.1090/mcom/3543
- Published electronically: June 1, 2020
- HTML | PDF | Request permission
Abstract:
Let $K$ be a number field, let $A$ be a finite-dimensional semisimple $K$-algebra, and let $\Lambda$ be an $\mathcal {O}_{K}$-order in $A$. It was shown in previous work that, under certain hypotheses on $A$, there exists an algorithm that for a given (left) $\Lambda$-lattice $X$ either computes a free basis of $X$ over $\Lambda$ or shows that $X$ is not free over $\Lambda$. In the present article, we generalize this by showing that, under weaker hypotheses on $A$, there exists an algorithm that for two given $\Lambda$-lattices $X$ and $Y$ either computes an isomorphism $X \rightarrow Y$ or determines that $X$ and $Y$ are not isomorphic. The algorithm is implemented in Magma for $A=\mathbb {Q}[G]$, $\Lambda =\mathbb {Z}[G]$, and $\Lambda$-lattices $X$ and $Y$ contained in $\mathbb {Q}[G]$, where $G$ is a finite group satisfying certain hypotheses. This is used to investigate the Galois module structure of rings of integers and ambiguous ideals of tamely ramified Galois extensions of $\mathbb {Q}$ with Galois group isomorphic to $Q_{8} \times C_{2}$, the direct product of the quaternion group of order $8$ and the cyclic group of order $2$.References
- A. Agboola and L. Caputo, On the square root of the inverse different, arXiv:1803.09392 (2020).
- Werner Bley and Robert Boltje, Computation of locally free class groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 72–86. MR 2282916, DOI 10.1007/11792086_{6}
- Oliver Braun, Renaud Coulangeon, Gabriele Nebe, and Sebastian Schönnenbeck, Computing in arithmetic groups with Voronoï’s algorithm, J. Algebra 435 (2015), 263–285. MR 3343219, DOI 10.1016/j.jalgebra.2015.01.022
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- W. Bley and M. Endres, Picard groups and refined discrete logarithms, LMS J. Comput. Math. 8 (2005), 1–16. MR 2123128, DOI 10.1112/S1461157000000875
- Jean-François Biasse, Claus Fieker, and Tommy Hofmann, On the computation of the HNF of a module over the ring of integers of a number field. part 3, J. Symbolic Comput. 80 (2017), no. part 3, 581–615. MR 3574529, DOI 10.1016/j.jsc.2016.07.027
- Werner Bley and Henri Johnston, Computing generators of free modules over orders in group algebras, J. Algebra 320 (2008), no. 2, 836–852. MR 2422318, DOI 10.1016/j.jalgebra.2008.01.042
- Werner Bley and Henri Johnston, Computing generators of free modules over orders in group algebras II, Math. Comp. 80 (2011), no. 276, 2411–2434. MR 2813368, DOI 10.1090/S0025-5718-2011-02488-9
- W. Bley, Computing associated orders and Galois generating elements of unit lattices, J. Number Theory 62 (1997), no. 2, 242–256. MR 1432772, DOI 10.1006/jnth.1997.2050
- Werner Bley and Stephen M. J. Wilson, Computations in relative algebraic $K$-groups, LMS J. Comput. Math. 12 (2009), 166–194. MR 2564571, DOI 10.1112/S1461157000001480
- Ted Chinburg, Exact sequences and Galois module structure, Ann. of Math. (2) 121 (1985), no. 2, 351–376. MR 786352, DOI 10.2307/1971177
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Jean Cougnard, Un anneau d’entiers stablement libre et non libre, Experiment. Math. 3 (1994), no. 2, 129–136 (French, with English and French summaries). MR 1313877, DOI 10.1080/10586458.1994.10504284
- Jean Cougnard, Anneaux d’entiers stablement libres sur $\Bbb Z[H_8\times C_2]$, J. Théor. Nombres Bordeaux 10 (1998), no. 1, 163–201 (French, with English and French summaries). MR 1827291, DOI 10.5802/jtnb.224
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 632548
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Luca Caputo and Stéphane Vinatier, Galois module structure of the square root of the inverse different in even degree tame extensions of number fields, J. Algebra 468 (2016), 103–154. MR 3550860, DOI 10.1016/j.jalgebra.2016.06.035
- Lassina Dembélé and Steve Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 371–386. MR 2467859, DOI 10.1007/978-3-540-79456-1_{2}5
- W. M. Eberly, Computations for algebras and group representations, Ph.D. thesis, University of Toronto, 1989.
- B. Erez, The Galois structure of the square root of the inverse different, Math. Z. 208 (1991), no. 2, 239–255. MR 1128708, DOI 10.1007/BF02571523
- Claus Fieker and Tommy Hofmann, Computing in quotients of rings of integers, LMS J. Comput. Math. 17 (2014), no. suppl. A, 349–365. MR 3240814, DOI 10.1112/S1461157014000291
- Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson, Nemo/Hecke: computer algebra and number theory packages for the Julia programming language, ISSAC’17—Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2017, pp. 157–164. MR 3703682, DOI 10.1145/3087604.3087611
- Claus Fieker, Tommy Hofmann, and Carlo Sircana, On the construction of class fields, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 239–255. MR 3952015
- C. R. Fletcher, Euclidean rings, J. London Math. Soc. (2) 4 (1971), 79–82. MR 292809, DOI 10.1112/jlms/s2-4.1.79
- C. Friedrichs, Berechnung von Maximalordnungen über Dedekindringen, Ph.D. thesis, Technische Universität Berlin, 2000.
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, DC, 1967. MR 215665
- A. Fröhlich, Some problems of Galois module structure for wild extensions, Proc. London Math. Soc. (3) 37 (1978), no. 2, 193–212.
- Albrecht Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 1, Springer-Verlag, Berlin, 1983. MR 717033, DOI 10.1007/978-3-642-68816-4
- A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934
- Kurt Girstmair, An algorithm for the construction of a normal basis, J. Number Theory 78 (1999), no. 1, 36–45. MR 1706933, DOI 10.1006/jnth.1999.2388
- D. G. Higman, On representations of orders over Dedekind domains, Canadian J. Math. 12 (1960), 107–125. MR 109175, DOI 10.4153/CJM-1960-010-1
- Emmanuel Hallouin and Christian Maire, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 595 (2006), 189–213. MR 2244802, DOI 10.1515/CRELLE.2006.048
- T. Hofmann, Integrality of representations of finite groups, Ph.D. thesis, Technische Universität Kaiserslautern, 2016.
- H. Jacobinski, On extensions of lattices, Michigan Math. J. 13 (1966), 471–475. MR 204538, DOI 10.1307/mmj/1028999605
- Fuminori Kawamoto, On normal integral bases of local fields, J. Algebra 98 (1986), no. 1, 197–199. MR 825142, DOI 10.1016/0021-8693(86)90022-0
- Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714–1747. MR 2592031, DOI 10.1137/080734467
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Heinrich-Wolfgang Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119–149 (German). MR 108479, DOI 10.1515/crll.1959.201.119
- Günter Lettl, The ring of integers of an abelian number field, J. Reine Angew. Math. 404 (1990), 162–170. MR 1037435, DOI 10.1515/crll.1990.404.162
- Emmy Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math. 167 (1932), 147–152 (German). MR 1581331, DOI 10.1515/crll.1932.167.147
- Gabriele Nebe and Allan Steel, Recognition of division algebras, J. Algebra 322 (2009), no. 3, 903–909. MR 2531228, DOI 10.1016/j.jalgebra.2009.04.026
- A. Page, An algorithm for the principal ideal problem in indefinite quaternion algebras, LMS J. Comput. Math. 17 (2014), no. suppl. A, 366–384. MR 3240815, DOI 10.1112/S1461157014000321
- W. G. Plesken, Beiträge zur Bestimmung der endlichen irreduziblen Untergruppen von $\mathrm {GL}(n,\mathbb {Z})$ und ihrer ganzzahligen Darstellungen, Ph.D. thesis, RWTH Aachen, 1974.
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27 (1980), no. 4, 701–717. MR 594695, DOI 10.1145/322217.322225
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Arne Storjohann and Thom Mulders, Fast algorithms for linear algebra modulo $N$, Algorithms—ESA ’98 (Venice), Lecture Notes in Comput. Sci., vol. 1461, Springer, Berlin, 1998, pp. 139–150. MR 1683348, DOI 10.1007/3-540-68530-8_{1}2
- Daniel Smertnig, A note on cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 707 (2015), 209–216. MR 3403458, DOI 10.1515/crelle-2013-0069
- A. K. Steel, Construction of ordinary irreducible representations of finite groups, Ph.D. thesis, Pure Mathematics, University of Sydney, 2012.
- Richard G. Swan, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66–172. MR 703486, DOI 10.1515/crll.1983.342.66
- M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981), no. 1, 41–79. MR 608528, DOI 10.1007/BF01389193
- S. Ullom, Normal bases in Galois extensions of number fields, Nagoya Math. J. 34 (1969), 153–167. MR 240082, DOI 10.1017/S0027763000024521
- W. R. Unger, Computing the character table of a finite group, J. Symbolic Comput. 41 (2006), no. 8, 847–862. MR 2246713, DOI 10.1016/j.jsc.2006.04.002
- Stéphane Vinatier, Sur la racine carrée de la codifférente, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 393–410 (French, with English and French summaries). Les XXIIèmes Journées Arithmetiques (Lille, 2001). MR 2019023, DOI 10.5802/jtnb.409
- Richard Zippel, Probabilistic algorithms for sparse polynomials, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 216–226. MR 575692
Bibliographic Information
- Tommy Hofmann
- Affiliation: Fachbereich Mathematik, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
- MR Author ID: 1074375
- Email: thofmann@mathematik.uni-kl.de
- Henri Johnston
- Affiliation: Department of Mathematics, University of Exeter, Exeter, EX4 4QF United Kingdom
- MR Author ID: 776746
- ORCID: 0000-0001-5764-0840
- Email: H.Johnston@exeter.ac.uk
- Received by editor(s): March 2, 2019
- Received by editor(s) in revised form: January 13, 2020
- Published electronically: June 1, 2020
- Additional Notes: The first author was supported by Project II.2 of SFB-TRR 195 “Symbolic Tools in Mathematics and their Application” of the German Research Foundation (DFG)
The second author was supported by EPSRC First Grant EP/N005716/1 “Equivariant Conjectures in Arithmetic”. - © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 2931-2963
- MSC (2010): Primary 11R33, 11Y40, 16Z05
- DOI: https://doi.org/10.1090/mcom/3543
- MathSciNet review: 4136552