Computing GIT-fans with symmetry and the Mori chamber decomposition of $\overline {M}_{0,6}$
HTML articles powered by AMS MathViewer
- by Janko Böhm, Simon Keicher and Yue Ren;
- Math. Comp. 89 (2020), 3003-3021
- DOI: https://doi.org/10.1090/mcom/3546
- Published electronically: June 30, 2020
- HTML | PDF | Request permission
Abstract:
We propose an algorithm to compute the GIT-fan for torus actions on affine varieties with symmetries. The algorithm combines computational techniques from commutative algebra, convex geometry, and group theory. We have implemented our algorithm in the Singular library gitfan.lib. Using our implementation, we compute the Mori chamber decomposition of $\operatorname {Mov}(\overline {M}_{0,6})$.References
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- Ivan V. Arzhantsev and Jürgen Hausen, Geometric invariant theory via Cox rings, J. Pure Appl. Algebra 213 (2009), no. 1, 154–172. MR 2462993, DOI 10.1016/j.jpaa.2008.06.005
- Florian Berchtold and Jürgen Hausen, GIT equivalence beyond the ample cone, Michigan Math. J. 54 (2006), no. 3, 483–515. MR 2280492, DOI 10.1307/mmj/1163789912
- Martha M. B. Guillen, Relations in the Cox ring of M0,6, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Warwick (United Kingdom). MR 3389369
- M. M. Bernal Guillén and D. Maclagan, A presentation of the Cox Ring of $\overline M_{0,6}$, Preprint, 2018. arXiv:1712.08193.
- J. Böhm, W. Decker, A. Frühbis-Krüger, F.-J. Pfreundt, M. Rahn, and L. Ristau, Towards massively parallel computations in algebraic geometry, Preprint, 2018. arXiv:1808.09727.
- Janko Böhm, Wolfram Decker, Simon Keicher, and Yue Ren, Current challenges in developing open source computer algebra systems, Mathematical aspects of computer and information sciences, Lecture Notes in Comput. Sci., vol. 9582, Springer, [Cham], 2016, pp. 3–24. MR 3517016, DOI 10.1007/978-3-319-32859-1_{1}
- J. Böhm, A. Frühbis-Krüger, and M. Rahn, Massively parallel computations in algebraic geometry - not a contradiction, Based on the theses of D. Bendle, C. Reinbold, and L. Ristau. Computeralgebra Rundbrief 64, 2019. arXiv:1811.06092.
- J. Böhm, S. Keicher, and Y. Ren, The Mori Chamber Decomposition of the Movable Cone of $\overline {M}_{0,6}$, 2016. Online data available at http://www.mathematik.uni-kl.de/~boehm/gitfan.
- J. Böhm, S. Keicher, and Y. Ren, gitfan.lib – A Singular library for computing the GIT fan, 2018. Available in the Singular distribution, source code available at https://github.com/Singular/Sources.
- Ana-Maria Castravet, The Cox ring of $\overline M_{0,6}$, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3851–3878. MR 2491903, DOI 10.1090/S0002-9947-09-04641-8
- W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4-1-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2018.
- Igor V. Dolgachev and Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56. With an appendix by Nicolas Ressayre. MR 1659282, DOI 10.1007/BF02698859
- Angela Gibney and Diane Maclagan, Lower and upper bounds for nef cones, Int. Math. Res. Not. IMRN 14 (2012), 3224–3255. MR 2946224, DOI 10.1093/imrn/rnr121
- Brendan Hassett and Yuri Tschinkel, On the effective cone of the moduli space of pointed rational curves, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 83–96. MR 1941624, DOI 10.1090/conm/314/05424
- Jürgen Hausen, Simon Keicher, and Rüdiger Wolf, Computing automorphisms of Mori dream spaces, Math. Comp. 86 (2017), no. 308, 2955–2974. MR 3667033, DOI 10.1090/mcom/3185
- Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494, DOI 10.1307/mmj/1030132722
- Simon Keicher, Computing the GIT-fan, Internat. J. Algebra Comput. 22 (2012), no. 7, 1250064, 11. MR 2999370, DOI 10.1142/S0218196712500646
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- C. Reinbold, Computation of the GIT-fan using a massively parallel implementation, Master’s thesis, 2018.
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- Michael Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691–723. MR 1333296, DOI 10.1090/S0894-0347-96-00204-4
Bibliographic Information
- Janko Böhm
- Affiliation: Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany
- MR Author ID: 974387
- ORCID: 0000-0003-1702-5864
- Email: boehm@mathematik.uni-kl.de
- Simon Keicher
- Affiliation: Departamento de Matematica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- MR Author ID: 1001701
- Email: keicher@mail.mathematik.uni-tuebingen.de
- Yue Ren
- Affiliation: Department of Mathematics, Computational Foundry, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
- MR Author ID: 988843
- ORCID: 0000-0002-6005-7119
- Email: yue.ren@swansea.ac.uk
- Received by editor(s): June 17, 2019
- Received by editor(s) in revised form: February 14, 2020
- Published electronically: June 30, 2020
- Additional Notes: The authors acknowledge support of SPP 1489 and SFB-TRR 195 (Project II.5) of the German Research Foundation (DFG). The second author was supported by proyecto FONDECYT postdoctorado N. 3160016. The third author was supported by the Israel Science Foundation through grant No. 844/14.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 89 (2020), 3003-3021
- MSC (2010): Primary 14L24; Secondary 13A50, 14Q99, 13P10, 68W10
- DOI: https://doi.org/10.1090/mcom/3546
- MathSciNet review: 4136555