Implicitization of tensor product surfaces via virtual projective resolutions
HTML articles powered by AMS MathViewer
- by Eliana Duarte and Alexandra Seceleanu;
- Math. Comp. 89 (2020), 3023-3056
- DOI: https://doi.org/10.1090/mcom/3548
- Published electronically: June 29, 2020
- HTML | PDF
Abstract:
We derive the implicit equations for certain parametric surfaces in three-dimensional projective space termed tensor product surfaces. Our method computes the implicit equation for such a surface based on the knowledge of the syzygies of the base point locus of the parametrization by means of constructing an explicit virtual projective resolution.References
- Christine Berkesch, Daniel Erman, and Gregory G Smith, Virtual resolutions for a product of projective spaces, Algebr. Geom. 7 (2020), 460–481., DOI 10.14231/AG-2020-013
- Nicolás Botbol, The implicit equation of a multigraded hypersurface, J. Algebra 348 (2011), 381–401. MR 2852248, DOI 10.1016/j.jalgebra.2011.09.019
- David A. Buchsbaum and David Eisenbud, What annihilates a module?, J. Algebra 47 (1977), no. 2, 231–243. MR 476736, DOI 10.1016/0021-8693(77)90223-X
- L. Busé, M. Elkadi, and B. Mourrain, Resultant over the residual of a complete intersection, J. Pure Appl. Algebra 164 (2001), no. 1-2, 35–57. Effective methods in algebraic geometry (Bath, 2000). MR 1854329, DOI 10.1016/S0022-4049(00)00144-4
- Laurent Busé, Residual resultant over the projective plane and the implicitization problem, Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 48–55. MR 2049730, DOI 10.1145/384101.384109
- Busé Laurent, Implicit matrix representations of rational Bézier curves and surfaces, Comput.-Aided Des. 46 (2014), 14–24. MR 3124172, DOI 10.1016/j.cad.2013.08.014
- Marc Chardin, Implicitization using approximation complexes, Algebraic geometry and geometric modeling, Math. Vis., Springer, Berlin, 2006, pp. 23–35. MR 2279841, DOI 10.1007/978-3-540-33275-6_{2}
- Susan Cooper, Giuliana Fatabbi, Elena Guardo, Anna Lorenzini, Juan Migliore, Uwe Nagel, Alexandra Seceleanu, Justyna Szpond, and Adam Van Tuyl, Symbolic powers of codimension two cohen-macaulay ideals, arXiv preprint arXiv:1606.00935 (2016).
- David Cox, Alicia Dickenstein, and Hal Schenck, A case study in bigraded commutative algebra, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 67–111. MR 2309927, DOI 10.1201/9781420050912.ch3
- David Cox, Ronald Goldman, and Ming Zhang, On the validity of implicitization by moving quadrics of rational surfaces with no base points, J. Symbolic Comput. 29 (2000), no. 3, 419–440. MR 1751389, DOI 10.1006/jsco.1999.0325
- Carlos D’Andrea, Macaulay style formulas for sparse resultants, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2595–2629. MR 1895195, DOI 10.1090/S0002-9947-02-02910-0
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Jitang Gao, Yutong Li, Michael Loper, and Amal Matoo, Virtual complete intersection in $\mathbb {P}^1\times \mathbb {P}^1$, arXiv preprint arXiv:1905.0999 (2019).
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1994 edition. MR 2394437
- Daniel R Grayson and Michael E Stillman, Macaulay2, a software system for research in algebraic geometry, 2002.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- J. William Hoffman and Hao Hao Wang, Castelnuovo-Mumford regularity in biprojective spaces, Adv. Geom. 4 (2004), no. 4, 513–536. MR 2096526, DOI 10.1515/advg.2004.4.4.513
- J.-P. Jouanolou, Le formalisme du résultant, Adv. Math. 90 (1991), no. 2, 117–263 (French). MR 1142904, DOI 10.1016/0001-8708(91)90031-2
- Jean-Pierre Jouanolou, Aspects invariants de l’élimination, Adv. Math. 114 (1995), no. 1, 1–174 (French). MR 1344713, DOI 10.1006/aima.1995.1042
- M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), no. 1, 189–218. MR 1174606, DOI 10.1215/S0012-7094-92-06707-X
- Diane Maclagan and Gregory G. Smith, Multigraded Castelnuovo-Mumford regularity, J. Reine Angew. Math. 571 (2004), 179–212. MR 2070149, DOI 10.1515/crll.2004.040
- Diane Maclagan and Gregory G. Smith, Uniform bounds on multigraded regularity, J. Algebraic Geom. 14 (2005), no. 1, 137–164. MR 2092129, DOI 10.1090/S1056-3911-04-00385-6
- T. Sederberg and F. Chen, Residual resultant over the projective plane and the implicitization problem, Siggraph 1995 conference proceedings, 1995, pp. 301–308.
Bibliographic Information
- Eliana Duarte
- Affiliation: Max-Planck-Institute for Mathematics in the Sciences, Leipzig; Otto-von-Guericke Universität, Magdeburg
- MR Author ID: 1132228
- Email: eliana.duarte@ovgu.de
- Alexandra Seceleanu
- Affiliation: Mathematics Department, University of Nebraska–Lincoln, Lincoln, Nebraska 68588
- MR Author ID: 896988
- ORCID: 0000-0002-7929-5424
- Email: aseceleanu@unl.edu
- Received by editor(s): August 6, 2019
- Received by editor(s) in revised form: March 1, 2020
- Published electronically: June 29, 2020
- Additional Notes: The first author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-314838170, GRK2297 MathCoRe.
The second author was supported by NSF grant DMS–1601024 and EpSCOR award OIA–1557417. - © Copyright 2020 Eliana Duarte and Alexandra Seceleanu
- Journal: Math. Comp. 89 (2020), 3023-3056
- MSC (2010): Primary 13P15; Secondary 13D02, 14Q10
- DOI: https://doi.org/10.1090/mcom/3548
- MathSciNet review: 4136556