Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 89 (2020) are as follows: for paper delivery, US$846.00 list, US$676.80 institutional member, US$761.40 corporate member, US$507.60 individual member; for electronic delivery, US$744.00 list, US$595.20 institutional member, US$669.60 corporate member, US$446.40 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$33 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2020 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index Expanded, ISI Alerting Services®️, CompuMath Citation Index®, and Current Contents®️/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík, Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters 2563
Charles M. Elliott and Philip J. Herbert, Second order splitting of a class of fourth order PDEs with point constraints 2613
Daniel Peterseim and Barbara Verfűrth, Computational high frequency scattering from high-contrast heterogeneous media 2649
Weifeng Qiu and Lan Tang, A note on the Monge–Ampère type equations with general source terms ... 2675
Pascal Heid and Thomas P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems 2707
Carl-Martin Pfeiler and Dirk Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem 2735
Qi Tao, Yan Xu, and Chi-Wang Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives 2753
Charles Curry, Kurusch Ebrahimi-Fard, and Brynjulf Owren, The Magnus expansion and post-Lie algebras 2785
Kristin Kirchner, Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs 2801
Sheehan Olver and Yuan Xu, Orthogonal polynomials in and on a quadratic surface of revolution .. 2847
Chenzhe Diao and Bin Han, Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators 2867
Nadir Murru and Lea Terracini, On the finiteness and periodicity of the \(p \)-adic Jacobi–Perron algorithm .. 2913
Tommy Hofmann and Henri Johnston, Computing isomorphisms between lattices ... 2931
Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves ... 2965
John D. Wiltshire-Gordon, On computing the eventual behavior of an FI-module over the rational numbers 2985
Janko Böhm, Simon Keicher, and Yue Ren, Computing GIT-fans with symmetry and the Mori chamber decomposition of \(\overline{M}_{0,6} \) 3003
Eliana Duarte and Alexandra Seceleanu, Implicitization of tensor product surfaces via virtual projective resolutions 3023
Matthieu Rosenfeld, How far away must forced letters be so that squares are still avoidable? .. 3057
Adell, José A., and Alberto Lekuona. *Rational approximation to Euler’s constant at a geometric rate of convergence*, 2553

Akbary, Amir, and Forrest J. Francis. *Euler’s function on products of primes in a fixed arithmetic progression*, 993

Almansi, Emilio, and Verónica Becher. *Completely uniformly distributed sequences based on de Bruijn sequences*, 2537

Anguas, Luis Miguel, María Isabel Bueno, and Froilán M. Dopico. *Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under Möbius transformations*, 767

Antonietti, Paola F., Paul Houston, Giorgio Pennesi, and Endre Süli. *An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids*, 2047

Balakrishnan, Jennifer S., and Jan Tuitman. *Explicit Coleman integration for curves*, 2965

Bao, Weizhu, Yongyong Cai, and Jia Yin. *Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime*, 2141

Barvinok, Alexander. *Stability and complexity of mixed discriminants*, 717

Becher, Verónica. See Almansi, Emilio

Berg, Jennifer, and Anthony Várilly-Alvarado. *Odd order obstructions to the Hasse principle on general K3 surfaces*, 1395

Bessemoulin-Chatard, Marianne, Maxime Herda, and Thomas Rey. *Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations*, 1093

Bik, Arthur, Jan Draisma, Alessandro Oneto, and Emanuele Ventura. *The monic rank*, 2481

Birgin, E. G., N. Krejčí, and J. M. Martínez. *Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact*, 253

Bocherer-Klein, Małgorzata, Piotr Jastrzębski, and Aleksy Tralle. *Nonexistence of standard compact Clifford–Klein forms of homogeneous spaces of exceptional Lie groups*, 1487

Böhm, Janko, Simon Keicher, and Yue Ren. *Computing GIT-fans with symmetry and the Mori chamber decomposition of \(\overline{M}_{0,6} \)*, 3003

van Bommel, Raymond, David Holmes, and J. Steffen Müller. *Explicit arithmetic intersection theory and computation of Néron-Tate heights*, 395

Bonizzoni, Francesca, Fabio Nobile, Ilaria Perugia, and Davide Pradovera. *Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure*, 1229

Bonnivard, Matthieu, Elie Bretin, and Antoine Lemenant. *Numerical approximation of the Steiner problem in dimension 2 and 3*, 1

Bras-Amorós, Maria, and Julio Fernández-González. *The right-generators descendant of a numerical semigroup*, 2017

Bretin, Elie. See Bonnivard, Matthieu

Bueno, María Isabel. See Anguas, Luis Miguel

Burman, Erik, Ali Feizmohammadi, and Lauri Oksanen. *A finite element data assimilation method for the wave equation*, 1681

Busé, Laurent, Alexandru Dimca, and Gabriel Sticlaru. *Freeness and invariants of rational plane curves*, 1525

Cai, Xiaofeng. See Yang, Yang

Cai, Yongyong. See Bao, Weizhu

Calegari, Frank, Shiva Chidambaram, and Alexandr Ghitza. *Some modular abelian surfaces*, 387

Canzani, Éric, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík. *Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters*, 2563

Carstensen, Carsten. *Collective marking for adaptive least-squares finite element methods with optimal rates*, 89

Celledoni, Elena, Solve Eidnes, Brynjulf Owren, and Torbjørn Ringholm. *Energy-preserving methods on Riemannian manifolds*, 609

Chassagneux, Jean-François, and Camilo A. Garcia Trillos. *Cubature method to solve BSDEs: Error expansion and complexity control*, 1895
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen, Long, and Xuehai Huang</td>
<td>Nonconforming Virtual Element Method for 2nth Order Partial Differential Equations in \mathbb{R}^n</td>
<td>1711</td>
</tr>
<tr>
<td>Chidambaram, Shiva</td>
<td>See Calegari, Frank</td>
<td></td>
</tr>
<tr>
<td>Colbrook, Matthew J.</td>
<td>Pseudoergodic operators and periodic boundary conditions</td>
<td>737</td>
</tr>
<tr>
<td>Corso, Gianna M. Del, Ilaria Del Corso, Roberto Dvornicich, and Francesco Romani</td>
<td>On computing the density of integers of the form $2^n + p$</td>
<td>2365</td>
</tr>
<tr>
<td>Corso, Ilaria Del.</td>
<td>See Corso, Gianna M. Del</td>
<td></td>
</tr>
<tr>
<td>Creutz, Brendan</td>
<td>Generalized Jacobians and explicit descents</td>
<td>1365</td>
</tr>
<tr>
<td>Curry, Charles, Kursch Ebrahimi-Fard, and Brynjulf Owren</td>
<td>The Magnus expansion and post-Lie algebras</td>
<td>2785</td>
</tr>
<tr>
<td>Dahmen, Wolfgang, Felix Gruber, and Olga Mula</td>
<td>An adaptive nested source term iteration for radiative transfer equations</td>
<td>1605</td>
</tr>
<tr>
<td>Dai, Yu-Hong</td>
<td>See Liu, Xin-Wei</td>
<td></td>
</tr>
<tr>
<td>Daniels, Harris B., and Enrique González-Jiménez</td>
<td>On the torsion of rational elliptic curves over sextic fields</td>
<td>411</td>
</tr>
<tr>
<td>De Terán, Fernando</td>
<td>Backward error and conditioning of Fiedler companion linearizations</td>
<td>1259</td>
</tr>
<tr>
<td>Delcroix, Vincent, Carlos Matheus, and Carlos Gustavo Moreira</td>
<td>Approximations of the Lange and Markov spectra</td>
<td>2521</td>
</tr>
<tr>
<td>Diao, Chenzhe, and Bin Han</td>
<td>Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators</td>
<td>2867</td>
</tr>
<tr>
<td>Dimca, Alexandru</td>
<td>See Busé, Laurent</td>
<td></td>
</tr>
<tr>
<td>Dong, Rina</td>
<td>See Wang, Dongming</td>
<td></td>
</tr>
<tr>
<td>Dopico, Fruílan M.</td>
<td>See Anguas, Luis Miguel</td>
<td></td>
</tr>
<tr>
<td>Draisma, Jan.</td>
<td>See Bik, Arthur</td>
<td></td>
</tr>
<tr>
<td>Du, Shukai, and Francisco-Javier Sayas</td>
<td>New analytical tools for HDG in elasticity, with applications to elastodynamics</td>
<td>1745</td>
</tr>
<tr>
<td>Duarte, Eliana, and Alexandra Seceleanu</td>
<td>Implicitization of tensor product surfaces via virtual projective resolutions</td>
<td>3023</td>
</tr>
<tr>
<td>Durán, Ricardo G., Enrique Otárola, and Abner J. Salgado</td>
<td>Stability of the Stokes projection on weighted spaces and applications</td>
<td>1581</td>
</tr>
<tr>
<td>Dusson, Geneviève</td>
<td>See Cancès, Eric</td>
<td></td>
</tr>
<tr>
<td>Dvornicich, Roberto</td>
<td>See Corso, Gianna M. Del</td>
<td></td>
</tr>
<tr>
<td>Ebrahimi-Fard, Kursch</td>
<td>See Curry, Charles</td>
<td></td>
</tr>
<tr>
<td>Eidnes, Solve</td>
<td>See Celledoni, Elena</td>
<td></td>
</tr>
<tr>
<td>Elliott, Charles M., and Philip J. Herbert</td>
<td>Second order splitting of a class of fourth order PDEs with point constraints</td>
<td>2613</td>
</tr>
<tr>
<td>Ern, Alexandre, and Martin Vohralík</td>
<td>Stable broken H^1 and $H(\text{div})$ polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions</td>
<td>551</td>
</tr>
<tr>
<td>Feizmohammadi, Ali</td>
<td>See Burman, Erik</td>
<td></td>
</tr>
<tr>
<td>Fernández-González, Julio</td>
<td>See Bras-Amorós, Maria</td>
<td></td>
</tr>
<tr>
<td>Ferretti, Roberto, and Michel Mehrenberger</td>
<td>Stability of Semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed</td>
<td>1783</td>
</tr>
<tr>
<td>Fiori, Andrew, and Andrew Shallue</td>
<td>Average liar count for degree-2 Frobenius pseudoprimes</td>
<td>493</td>
</tr>
<tr>
<td>Flammang, V.</td>
<td>An analog to the Schur-Siegel-Smyth trace problem</td>
<td>2387</td>
</tr>
<tr>
<td>Francis, Forrest J.</td>
<td>See Akbary, Amir</td>
<td></td>
</tr>
<tr>
<td>Friedland, Shmuel, and Li Wang</td>
<td>Spectral norm of a symmetric tensor and its computation</td>
<td>2175</td>
</tr>
<tr>
<td>Fu, Guosheng, Johnny Guzmán, and Michael Neilan</td>
<td>Exact smooth piecewise polynomial sequences on Alfeld splits</td>
<td>1059</td>
</tr>
<tr>
<td>Gamanda, Maroua, Henri Lombardi, Stefan Neuwirth, and Ihsen Yengui</td>
<td>The syzygy theorem for Bézout rings</td>
<td>941</td>
</tr>
<tr>
<td>Ghitza, Alexandru</td>
<td>See Calegari, Frank</td>
<td></td>
</tr>
</tbody>
</table>
Goedgebeur, Jan, Barbara Meersman, and Carol T. Zamfirescu. Graphs with few hamiltonian cycles, 965
González-Jiménez, Enrique. See Daniels, Harris B.
González–Jiménez, Enrique, and Filip Najman. Growth of torsion groups of elliptic curves upon base change, 1457
Gopalakrishnan, Jay, Luka Grubišić, and Jeffrey Ovall. Spectral discretization errors in filtered subspace iteration, 203
Gosse, Laurent. Aliasing and two-dimensional well-balanced for drift-diffusion equations on square grids, 139
Graham, I. G., and S. A. Sauter. Stability and finite element error analysis for the Helmholtz equation with variable coefficients, 105
Griebel, Michael, and Peter Oswald. Stochastic subspace correction methods and fault tolerance, 279
Gruber, Felix. See Dahmen, Wolfgang
Grubišić, Luka. See Gopalakrishnan, Jay
Guglielmi, Nicola, María López-Fernández, and Giancarlo Nino. Numerical inverse Laplace transform for convection-diffusion equations, 1161
Guzmán, Johnny. See Fu, Guosheng
Han, Bin. See Diao, Chenzhie
Hao, Zhiwei, Wenrong Jiang, Nan Li, and Lihong Zhi. On isolation of simple multiple zeros and clusters of zeros of polynomial systems, 879
Harris, Corey, and Martin Helmer. Segre class computation and practical applications, 465
Hasegawa, Sumito, Akinari Hoshi, and Aiichi Yamasaki. Rationality problem for norm one tori in small dimensions, 923
Heid, Pascal, and Thomas P. Wihler. Adaptive iterative linearization Galerkin methods for nonlinear problems, 2707
Helfgott, Harald Andrés. An improved sieve of Eratosthenes, 333
Helmer, Martin. See Harris, Corey
Herbert, Philip J. See Elliott, Charles M.
Herda, Maxime. See Bessemoulin-Chatard, Marianne
Hoang, Thi-Thao-Phuong, Lili Ju, Wei Leng, and Zhu Wang. High order explicit local time stepping methods for hyperbolic conservation laws, 1807
Hofmann, Tommy, and Henri Johnston. Computing isomorphisms between lattices, 2931
Holmes, David. See van Bommel, Raymond
Hoshi, Akinari. See Hasegawa, Sumito
Houston, Paul. See Antonietti, Paola F.
Hu, Xiaozhe. See Chen, Long
Huang, Rong. A qd-type method for computing generalized singular values of BF matrix pairs with sign regularity to high relative accuracy, 229
Huang, Xuehai. See Chen, Long
Huré, Côme, Huyën Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear PDEs, 1547
Jastrzębski, Piotr. See Bocheński, Maciej
Jiang, Wenrong. See Hao, Zhiwei
Johnston, Henri. See Hofmann, Tommy
Ju, Lili. See Hoang, Thi-Thao-Phuong
Kahle, Thomas, and Christian Stump. Counting inversions and descents of random elements in finite Coxeter groups, 437
Kashiwabara, Takahito, and Tomoya Kemmochi. Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains, 1647
Keicher, Simon. See Böhm, Janko
Kemmochi, Tomoya. See Kashiwabara, Takahito
Kharchampovich, Olga, Laura López, and Alexei Myasnikov. The Diophantine problem in some metabelian groups, 2507
Khomovsky, Dmitry I. On using symmetric polynomials for constructing root finding methods, 2321
Kirchner, Kristin. Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs, 2801
INDEX TO VOLUME 89 (2020)

Köcher, U. See Bause, M.
Kolpakov, Alexander, and Sinai Robins. Spherical tetrahedra with rational volume, and spherical Pythagorean triples, 2031
Kopp, Leann, Natalie Randall, J. Maurice Rojas, and Yuyu Zhu. Randomized polynomial-time root counting in prime power rings, 373
Krejić, N. See Birgin, E. G.
Laplagne, Santiago. Facial reduction for exact polynomial sum of squares decomposition, 859
Laurent, Adrien, and Gilles Vilmart. Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs, 169
Le Gluher, Aude, and Pierre-Jean Spaenlehauer. A fast randomized geometric algorithm for computing Riemann-Roch spaces, 2399
Le, Tung, Kay Magaard, and Alessandro Paolini. On the characters of Sylow p-subgroups of finite Chevalley groups G(p^f) for arbitrary primes, 1501
Lee, Ching-pei. See Wright, Stephen J.
Lekuona, Alberto. See Adell, José A.
Lemenant, Antoine. See Bonnivard, Matthieu
Leng, Wei. See Hoang, Thi-Thao-Phuong
Li, Jia, Dazhi Zhang, Xiong Meng, and Boying Wu. Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations, 2085
Li, Lei, and Jian-Guo Liu. Large time behaviors of upwind schemes and B-schemes for Fokker-Planck equations on \(\mathbb{R} \) by jump processes, 2283
Li, Nan. See Hao, Zhiwei
Li, Zhixuan. See Zhang, Qinghai
Linderman, George C., and Stefan Steinerberger. Numerical integration on graphs: Where to sample and how to weigh, 1933
Liu, Haifang, JamesRalston, and Peimeng Yin. General superpositions of Gaussian beams and propagation errors, 675
Liu, Jian-Guo. See Li, Lei
Liu, Xin-Wei, and Yu-Hong Dai. A globally convergent primal-dual interior-point relaxation method for nonlinear programs, 1301
Lombardi, Henri. See Gamanda, Marona
López, Laura. See Kharchijovitch, Olga
López-Fernández, María. See Guglielmi, Nicola
Maday, Yvon. See Cancès, Eric
Magaard, Kay. See Le, Tung
Martínez, J. M. See Birgin, E. G.
Mascot, Nicolas. Hensel-lifting torsion points on Jacobians and Galois representations, 1417
Matheus, Carlos. See Delcroix, Vincent
Mathies, Daniel, and Benjamin Söllner. Discretization of flux-limited gradient flows: \(\Gamma \)-convergence and numerical schemes, 1027
Meersman, Barbara. See Goedgebeur, Jan
Mehrenberger, Michel. See Ferretti, Roberto
Meng, Xiong. See Li, Jia
Méri, László, and Igor E. Shparlinski. Distribution of short subsequences of inversive congruential pseudorandom numbers modulo \(2^t \), 911
Mercuri, Pietro, and René Schoof. Modular forms invariant under non-split Cartan subgroups, 1969
Milio, Enea. Computing isogenies between Jacobians of curves of genus 2 and 3, 1331
Montardini, Monica, Matteo Negri, Giancarlo Sangalli, and Mattia Tani. Space-time least-squares isogeometric method and efficient solver for parabolic problems, 1193
Moreira, Carlos Gustavo. See Delcroix, Vincent
Mou, Chenqi. See Wang, Dongming
Mula, Olga. See Dahmen, Wolfgang
Müller, J. Steffen. See van Bommel, Raymond
Murru, Nadir, and Lea Terracini. *On the finiteness and periodicity of the p-adic Jacobi–Perron algorithm*, 2913

Myasnikov, Alexei. See Kharlampovich, Olga

Najman, Filip. See González–Jiménez, Enrique

Nakatsukasa, Yuji. *Sharp error bounds for Ritz vectors and approximate singular vectors*, 1843

Negri, Matteo. See Montardini, Monica

Neilan, Michael. See Fu, Guosheng

Neuwirth, Stefan. See Gamanda, Maroua

Nino, Giancarlo. See Guglielmi, Nicola

Nobile, Fabio. See Bonizzoni, Francesca

Notay, Yvan. *Analysis of two-grid methods: The nonnormal case*, 807

Oksanen, Lauri. See Burman, Erik

Olver, Sheehan, and Yuan Xu. *Orthogonal polynomials in and on a quadratic surface of revolution*, 2847

Oneto, Alessandro. See Bik, Arthur

Östergård, Patric R. J. See Lampio, Pekka H. J.

Osting, Braxton, and Dong Wang. *A diffusion generated method for orthogonal matrix-valued fields*, 515

Oswald, Peter. See Griebel, Michael

Otárola, Enrique. See Durán, Ricardo G.

Ovall, Jeffrey. See Gopalakrishnan, Jay

Owren, Brynjulf. See Celledoni, Elena

Pakzad, Ali. See Fiordilino, Joseph A.

Paolini, Alessandro. See Le, Tung

Pennesi, Giorgio. See Antonietti, Paola F.

Perugia, Ilaria. See Bonizzoni, Francesca

Peterseim, Daniel, and Barbara Verfürth. *Computational high frequency scattering from high-contrast heterogeneous media*, 2649

Pfeiler, Carl-Martin, and Dirk Praetorius. *Dörfler marking with minimal cardinality is a linear complexity problem*, 2735

Pham, Huyën. See Huré, Côme

Poor, Cris, Jerry Shurman, and David S. Yuen. *Finding all Borcherds product paramodular cusp forms of a given weight and level*, 2435

Pradovera, Davide. See Bonizzoni, Francesca

Praetorius, Dirk. See Pfeiler, Carl-Martin

Pulaj, Jonad. *Cutting planes for families implying Frankl’s conjecture*, 829

Qiu, Jing-Mei. See Yang, Yang

Qiu, Weifeng, and Lan Tang. *A note on the Monge–Ampère type equations with general source terms*, 2675

Radu, F. A. See Bause, M.

Ralston, James. See Liu, Hailiang

Randall, Natalie. See Kopp, Leann

Ren, Yue. See Böhm, Janko

Rey, Thomas. See Bessemolin-Chatard, Marianne

Ringholm, Torbjorn. See Celledoni, Elena

Robins, Sinai. See Kolpakov, Alexander

Rojas, J. Maurice. See Kopp, Leann

Rojik, C. See Melenk, J. M.

Romani, Francesco. See Corso, Gianna M. Del

Rosenfeld, Matthieu. *How far away must forced letters be so that squares are still avoidable?*, 3057

Salgado, Abner J. See Durán, Ricardo G.

Sangalli, Giancarlo. See Montardini, Monica

Sauter, S. A. See Graham, I. G.

Sayas, Francisco-Javier. See Du, Shukai
INDEX TO VOLUME 89 (2020)

Schieweck, F. See Bause, M.
Schoof, René. See Mercuri, Pietro
Seceleanu, Alexandra. See Duarte, Eliana
Shallue, Andrew. See Fiori, Andrew
Shparlinski, Igor E. See Mérai, László
Shu, Chi-Wang. See Tao, Qi
Shurman, Jerry. See Poor, Cris
Soga, Kohei. Stochastic and variational approach to finite difference approximation of Hamilton-Jacobi equations, 1135
Söllner, Benjamin. See Matthes, Daniel
Sorenson, Jonathan P., and Jonathan Webster. Two algorithms to find primes in patterns, 1953
Spaenlehauer, Pierre-Jean. See Le Gluher, Aude
Stamm, Benjamin. See Cancès, Eric
Steinerberger, Stefan. See Linderman, George C.
Stevenson, Rob, and Raymond van Venetié. Uniform preconditioners for problems of negative order, 645
Sticlaru, Gabriel. See Busé, Laurent
Stump, Christian. See Kahle, Thomas
Süli, Endre. See Antonietti, Paola F.
Szöllösi, Ferenc. See Lampio, Pekka H. J.
Tamura, Jun-ichi. See Saito, Asaki
Tang, Lan. See Qiu, Weifeng
Tani, Mattia. See Montardini, Monica
Tao, Qi, Yan Xu, and Chi-Wang Shu. An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives, 2753
Terracini, Lea. See Murru, Nadir
Trelle, Aleksy. See Bocheński, Maciej
Trillos, Camilo A. Garcia. See Chassagneux, Jean-Francois
Tuitman, Jan. See Balakrishnan, Jennifer S.
Várilly-Alvarado, Anthony. See Berg, Jennifer
van Venetié, Raymond. See Stevenson, Rob
Ventre, Emanuele. See Bik, Arthur
Verfürth, Barbara. See Peterseim, Daniel
Vilmart, Gilles. See Laurent, Adrien
Vohralík, Martin. See Cancès, Eric
Wang, Dong. See Osting, Braxton
Wang, Dongming, Rina Dong, and Chenqi Mou. Decomposition of polynomial sets into characteristic pairs, 1993
Wang, Li. See Friedland, Shmuel
Wang, Zhu. See Hoang, Thi-Thao-Phuong
Warin, Xavier. See Huré, Côme
Webster, Jonathan. See Sorenson, Jonathan P.
Wihler, Thomas P. See Heid, Pascal
Wiltshire-Gordon, John D. On computing the eventual behavior of an FI-module over the rational numbers, 2985
Wise, Steven M. See Chen, Long
Wright, Stephen J., and Ching-pei Lee. Analyzing random permutations for cyclic coordinate descent, 2217
Wu, Boying. See Li, Jia
Wu, Jia. See Zhang, Ning
Xu, Yan. See Tao, Qi
Xu, Yuan. See Olver, Sheehan
Yamasaki, Aiichi. See Hasegawa, Sumito
Yang, Yang, Xiaofeng Cai, and Jing-Mei Qiu. Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension, 2113
Yasutomi, Shin-ichi. See Saito, Asaki
Yengui, Ihsen. See Gamanda, Maroua
Yin, Jia. See Bao, Weizhu
Yin, Peimeng. See Liu, Hailiang
Yuen, David S. See Poor, Cris
Zamfirescu, Carol T. See Goedgebeur, Jan
Zhang, Dazhi. See Li, Jia
Zhang, Liwei. See Zhang, Ning
Zhang, Ning, Jia Wu, and Liwei Zhang. A linearly convergent majorized ADMM with indefinite proximal terms for convex composite programming and its applications, 1867
Zhang, Qinghai, and Zhixuan Li. Boolean algebra of two-dimensional continua with arbitrary complex topology, 2333
Zhi, Lihong. See Hao, Zhiwei
Zhu, Yuyu. See Kopp, Leann
Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 89 (2020) are as follows: for paper delivery, US$846.00 list, US$676.80 institutional member, US$761.40 corporate member, US$507.60 individual member; for electronic delivery, US$744.00 list, US$595.20 institutional member, US$669.60 corporate member, US$446.40 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$33 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2020 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index Expanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Matthieu Bonnivard, Elie Bretin, and Antoine Lemenant, Numerical approximation of the Steiner problem in dimension 2 and 3 .. 1

J. M. Melenk and C. Rojik, On commuting p-version projection-based interpolation on tetrahedra ... 45

Carsten Carstensen, Collective marking for adaptive least-squares finite element methods with optimal rates ... 89

I. G. Graham and S. A. Sauter, Stability and finite element error analysis for the Helmholtz equation with variable coefficients 105

Laurent Gosse, Aliasing and two-dimensional well-balanced for drift-diffusion equations on square grids .. 139

Adrien Laurent and Gilles Vilmart, Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs 169

Jay Gopalakrishnan, Luka Grubišić, and Jeffrey Ovall, Spectral discretization errors in filtered subspace iteration 203

Rong Huang, A qd-type method for computing generalized singular values of BF matrix pairs with sign regularity to high relative accuracy 229

E. G. Birgin, N. Krejić, and J. M. Martínez, Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact ... 253

Michael Griebel and Peter Oswald, Stochastic subspace correction methods and fault tolerance ... 279

Pekka H. J. Lampio, Patric R. J. Östergård, and Ferenc Szöllősi, Orderly generation of Butson Hadamard matrices 313

Harald Andrés Helfgott, An improved sieve of Eratosthenes 333

Asaki Saito, Jun-ichi Tamura, and Shin-ichi Yasutomi, Multidimensional p-adic continued fraction algorithms ... 351

Leann Kopp, Natalie Randall, J. Maurice Rojas, and Yuyu Zhu, Randomized polynomial-time root counting in prime power rings 373

Frank Calegari, Shiva Chidambaram, and Alexandru Ghitza, Some modular abelian surfaces ... 387

Raymond van Bommel, David Holmes, and J. Steffen Müller, Explicit arithmetic intersection theory and computation of Néron-Tate heights .. 395

Harris B. Daniels and Enrique González-Jiménez, On the torsion of rational elliptic curves over sextic fields .. 411

Thomas Kahle and Christian Stump, Counting inversions and descents of random elements in finite Coxeter groups 437

Corey Harris and Martin Helmer, Segre class computation and practical applications ... 465

Andrew Fiori and Andrew Shallue, Average liar count for degree-2 Frobenius pseudoprimes ... 493
Braxton Osting and Dong Wang, A diffusion generated method for orthogonal matrix-valued fields .. 515
Alexandre Ern and Martin Vohralík, Stable broken \(H^1 \) and \(H(\text{div}) \) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions ... 551
M. Bause, U. Köcher, F. A. Radu, and F. Schieweck, Post-processed Galerkin approximation of improved order for wave equations 595
Joseph A. Fiordilino and Ali Pakzad, A discrete Hopf interpolant and stability of the finite element method for natural convection 629
Rob Stevenson and Raymond van Venetië, Uniform preconditioners for problems of negative order ... 645
Hailiang Liu, James Ralston, and Peimeng Yin, General superpositions of Gaussian beams and propagation errors ... 675
Elena Celledoni, Sølve Eidnes, Brynjulf Owren, and Torbjørn Ringholm, Energy-preserving methods on Riemannian manifolds 699
Alexander Barvinok, Stability and complexity of mixed discriminants 717
Matthew J. Colbrook, Pseudoergodic operators and periodic boundary conditions .. 737
Luis Miguel Anguas, Maria Isabel Bueno, and Froilán M. Dopico, Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under Möbius transformations .. 767
Yvan Notay, Analysis of two-grid methods: The nonnormal case 807
Jonad Pulaj, Cutting planes for families implying Frankl’s conjecture 829
Santiago Laplagne, Facial reduction for exact polynomial sum of squares decomposition ... 859
Zhiwei Hao, Wenrong Jiang, Nan Li, and Lihong Zhi, On isolation of simple multiple zeros and clusters of zeros of polynomial systems .. 879
László Mérai and Igor E. Shparlinski, Distribution of short subsequences of inversive congruential pseudorandom numbers modulo \(2^t \) 911
Sumito Hasegawa, Akinari Hoshi, and Aiichi Yamasaki, Rationality problem for norm one tori in small dimensions 923
Maroua Gamanda, Henri Lombardi, Stefan Neuwirth, and Ihsen Yengui, The syzygy theorem for Bézout rings 941
Jan Goedgebeur, Barbara Meersman, and Carol T. Zamfirescu, Graphs with few hamiltonian cycles ... 965
Amir Akbary and Forrest J. Francis, Euler’s function on products of primes in a fixed arithmetic progression ... 993

Vol. 89, No. 323 May 2020

Daniel Matthes and Benjamin Söllner, Discretization of flux-limited gradient flows: \(\Gamma \)-convergence and numerical schemes 1027
Guosheng Fu, Johnny Guzmán, and Michael Neilan, Exact smooth piecewise polynomial sequences on Alfeld splits .. 1059
Marianne Bessemoulin-Chatard, Maxime Herda, and Thomas Rey, Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations ... 1093
Kohei Soga, Stochastic and variational approach to finite difference approximation of Hamilton-Jacobi equations .. 1135
Nicola Guglielmi, María López-Fernández, and Giancarlo Nino, Numerical inverse Laplace transform for convection-diffusion equations 1161
Monica Montardini, Matteo Negri, Giancarlo Sangalli, and Mattia Tani, Space–time least–squares isogeometric method and efficient solver for parabolic problems .. 1193
Francesca Bonizzoni, Fabio Nobile, Ilaria Perugia, and Davide Pradovera, Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure 1229
Fernando De Terán, Backward error and conditioning of Fiedler companion linearizations ... 1259
Xin-Wei Liu and Yu-Hong Dai, A globally convergent primal-dual interior-point relaxation method for nonlinear programs 1301
Enea Milio, Computing isogenies between Jacobians of curves of genus 2 and 3 .. 1331
Brendan Creutz, Generalized Jacobians and explicit descents 1365
Jennifer Berg and Anthony Váraly-Alvarado, Odd order obstructions to the Hasse principle on general K3 surfaces 1395
Nicolas Mascot, Hensel-lifting torsion points on Jacobians and Galois representations .. 1417
Enrique González–Jiménez and Filip Najman, Growth of torsion groups of elliptic curves upon base change .. 1457
Maciej Bocheński, Piotr Jastrzębski, and Aleksy Tralle, Nonexistence of standard compact Clifford–Klein forms of homogeneous spaces of exceptional Lie groups ... 1487
Tung Le, Kay Magaard, and Alessandro Paolini, On the characters of Sylow p-subgroups of finite Chevalley groups G(p^f) for arbitrary primes 1501
Laurent Busé, Alexandru Dimca, and Gabriel Sticlaru, Freeness and invariants of rational plane curves .. 1525

Vol. 89, No. 324 July 2020

Côme Huré, Huyën Pham, and Xavier Warin, Deep backward schemes for high-dimensional nonlinear PDEs .. 1547
Ricardo G. Durán, Enrique Otárola, and Abner J. Salgado, Stability of the Stokes projection on weighted spaces and applications 1581
Wolfgang Dahmen, Felix Gruber, and Olga Mula, An adaptive nested source term iteration for radiative transfer equations 1605
Takahito Kashiwabara and Tomoya Kemmochi, Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains ... 1647
Erik Burman, Ali Feizmohammadi, and Lauri Oksanen, A finite element data assimilation method for the wave equation 1681
Long Chen and Xuehai Huang, Nonconforming Virtual Element Method for 2mth Order Partial Differential Equations in \mathbb{R}^n .. 1711
Shukai Du and Francisco-Javier Sayas, New analytical tools for HDG in elasticity, with applications to elastodynamics 1745
Roberto Ferretti and Michel Mehrenberger, Stability of Semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed .. 1783
Thi-Thao-Phuong Hoang, Lili Ju, Wei Leng, and Zhu Wang, High order explicit local time stepping methods for hyperbolic conservation laws .. 1807
Yuji Nakatsukasa, Sharp error bounds for Ritz vectors and approximate singular vectors .. 1843
Ning Zhang, Jia Wu, and Liwei Zhang, A linearly convergent majorized ADMM with indefinite proximal terms for convex composite programming and its applications 1867
Jean-Francois Chassagneux and Camilo A. Garcia Trillos, Cubature method to solve BSDEs: Error expansion and complexity control 1895
George C. Linderman and Stefan Steinerberger, Numerical integration on graphs: Where to sample and how to weigh 1933
Jonathan P. Sorenson and Jonathan Webster, Two algorithms to find primes in patterns .. 1953
Pietro Mercuri and René Schoof, Modular forms invariant under non-split Cartan subgroups .. 1969
Dongming Wang, Rina Dong, and Chenqi Mou, Decomposition of polynomial sets into characteristic pairs 1993
Maria Bras-Amorós and Julio Fernández-González, The right-generators descendant of a numerical semigroup 2017
Alexander Kolpakov and Sinai Robins, Spherical tetrahedra with rational volume, and spherical Pythagorean triples 2031

Vol. 89, No. 325 September 2020

Paola F. Antonietti, Paul Houston, Giorgio Pennesi, and Endre Síli, An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids .. 2047
Jia Li, Dazhi Zhang, Xiong Meng, and Boying Wu, Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations .. 2085
Yang Yang, Xiaofeng Cai, and Jing-Mei Qiu, Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension 2113
Weizhu Bao, Yongyong Cai, and Jia Yin, Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime . 2141
Shmuel Friedland and Li Wang, Spectral norm of a symmetric tensor and its computation ... 2175
Stephen J. Wright and Ching-pei Lee, Analyzing random permutations for cyclic coordinate descent .. 2217
Lei Li and Jian-Guo Liu, Large time behaviors of upwind schemes and B-schemes for Fokker-Planck equations on \mathbb{R} by jump processes 2283
Dmitry I. Khomovsky, On using symmetric polynomials for constructing root finding methods ... 2321
Qinghai Zhang and Zhixuan Li, Boolean algebra of two-dimensional continua with arbitrarily complex topology 2333
Gianna M. Del Corso, Ilaria Del Corso, Roberto Dvornicich, and Francesco Romani, On computing the density of integers of the form $2^n + p$... 2365
V. Flammang, An analog to the Schur-Siegel-Smyth trace problem 2387
Aude Le Gluher and Pierre-Jean Spaenlehauer, A fast randomized geometric algorithm for computing Riemann-Roch spaces 2399
Cris Poor, Jerry Shurman, and David S. Yuen, Finding all Borcherds product paramodular cusp forms of a given weight and level 2435
Arthur Bik, Jan Draisma, Alessandro Oneto, and Emanuele Ventura, The monic rank ... 2481
Olga Kharlampovich, Laura López, and Alexei Myasnikov, The Diophantine problem in some metabelian groups 2507
Vincent Delecroix, Carlos Matheus, and Carlos Gustavo Moreira, Approximations of the Lagrange and Markov spectra 2521
Emilio Almansi and Verónica Becher, Completely uniformly distributed sequences based on de Bruijn sequences 2537
José A. Adell and Alberto Lekuona, Rational approximation to Euler’s constant at a geometric rate of convergence 2553

Vol. 89, No. 326 November 2020

Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík, Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters 2563
Charles M. Elliott and Philip J. Herbert, Second order splitting of a class of fourth order PDEs with point constraints 2613
Daniel Peterseim and Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media 2649
Weifeng Qiu and Lan Tang, A note on the Monge–Ampère type equations with general source terms .. 2675
Pascal Heid and Thomas P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems .. 2707
Carl-Martin Pfeiler and Dirk Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem 2735
Qi Tao, Yan Xu, and Chi-Wang Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives 2753
Charles Curry, Kurusch Ebrahimi-Fard, and Brynjulf Owren, The Magnus expansion and post-Lie algebras 2785
Kristin Kirchner, Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs 2801
Sheehan Olver and Yuan Xu, Orthogonal polynomials in and on a quadratic surface of revolution ... 2847
Chenzhe Diao and Bin Han, Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators 2867
Nadir Murru and Lea Terracini, On the finiteness and periodicity of the p-adic Jacobi–Perron algorithm .. 2913
Tommy Hofmann and Henri Johnston, Computing isomorphisms between lattices .. 2931
Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves ... 2965
John D. Wiltshire-Gordon, On computing the eventual behavior of an FI-module over the rational numbers 2985
Janko Böhm, Simon Keicher, and Yue Ren, Computing GIT-fans with symmetry and the Mori chamber decomposition of $\overline{\mathcal{M}}_{0,6}$ 3003
Eliana Duarte and Alexandra Seceleanu, Implicitization of tensor product surfaces via virtual projective resolutions 3023
Matthieu Rosenfeld, How far away must forced letters be so that squares are still avoidable? ... 3057
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are electronically published on the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2213 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. Manuscripts should be electronically prepared in AMS-\LaTeX. To this end, the Society has prepared AMS-\LaTeX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the AMS-\LaTeX style file and the \label and \ref commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web.

Authors may retrieve an author package for Mathematics of Computation from www.ams.org/mcom/mcomauthorpac.html. The AMS Author Handbook is available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When requesting an author package, please specify the publication in which your paper will appear. Please be sure to include your complete email address.
After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

AMS policy on making changes to articles after publication. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually published to the AMS website, changes cannot be made in place in the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is electronically published.

Corrections of critical errors may be made to the paper by submitting an errata article to the Editor. The errata article will be published electronically, will appear in a future print issue, and will link back and forth on the Web with the original article.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.
Editorial Committee

SUSANNE C. BRENNER, Chair, Center for Computation & Technology and Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: mathcomp@math.lsu.edu

MICHAEL J. MOSSINGHOFF, Center for Communications Research, 805 Bunn Dr., Princeton, NJ 08540 USA; E-mail: m.mossinghoff@idaccr.org

CHI-WANG SHU, Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: Chi-Wang.Shu@brown.edu

DANIEL B. SZYLDO, Department of Mathematics 038-16, Temple University, 638 Wachman, 1805 N. Broad St. Philadelphia, PA 19122-6094 USA; E-mail: szyl@temple.edu

Board of Associate Editors

DANIELE BOFFI, Department of Mathematics, University di Pavia, Via Ferrata 1, 27100 Pavia PV, Italy; E-mail: daniele.boffi@unipv.it

MARTIN BURGER, Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany; E-mail: martin.burger@fau.de

ALBERT COHEN, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, Place Jussieu, 75005 Paris, France; E-mail: cohen@ann.jussieu.fr

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

ALAN DEMLOW, Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843; E-mail: demlow@math.tamu.edu

BRUNO DESPRES, University of Paris VI, Laboratory Jacques-Louis Lions, 175 rue du Chevaleret, 75013 Paris, France; E-mail: despres@ljll.math.upmc.fr

ALICIA DICKENSTEIN, Departamento de Matemática, FCEN, University of Buenos Aires, Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina; E-mail: alidick@dm.uba.ar

JAN DRAISMA, Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern Switzerland; E-mail: jan.draisma@math.unibe.ch

QIANG DU, Columbia University, 500 W 120th Street, APAM, 200 Mudd, MC 4701, New York, NY 10027, USA; E-mail: qdu2125@columbia.edu

BETTINA EICK, Institut Computational Mathematics, University of Braunschweig, 38106 Braunschweig, Germany; E-mail: beick@tu-bs.de

HOWARD C. ELMAN, Department of Computer Science, University of Maryland, College Park, MD 20742 USA; E-mail: elman@cs.umd.edu

IVAN G. GRAHAM, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom; E-mail: i.g.graham@bath.ac.uk

RALF HIPTMAIR, Department of Mathematics, Seminar of Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland. E-mail: hiptmair@sam.math.ethz.ch

MARK van Hoeij, Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, FL 32306 USA; E-mail: hoeij@math.fsu.edu

FRANCES KUO, University of New South Wales, School of Mathematics, Sydney NSW 2052, Australia; E-mail: f.kuo@unsw.edu.au

SVEN LEYFFER, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; E-mail: leyffer@anl.gov

CHRISTIAN LUBICH, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany; E-mail: lubich@na.uni-tuebingen.de

ANDREI MARTINEZ-FINKELShteIN, Department of Mathematics, Baylor University, Waco, TX 76798 USA; and Department of Mathematics, University of Almeria, 04120 Almeria, Spain; E-mail: a.martinez-finkelshtein@baylor.edu

JAMES MCKEE, Department of Mathematics, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, United Kingdom; E-mail: james.mckee@rhul.ac.uk
JENS MARKUS MELENK, Institute of Analysis and Scientific Computing, Technische Universität Wien, Wiedner Haupstrasse 8-10, A-1040 Vienna, Austria; E-mail: melenk@tuwien.ac.at

MICHAEL J. NEILAN, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 USA; E-mail: neilan@pitt.edu

FABIO NOBILE, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland; E-mail: fabio.nobile@epfl.ch

ADAM M. OBERMAN, Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St W, Montreal QC H3A 0B9, Canada; E-mail: adam.oberman@mcgill.ca

IGOR E. SHPARLINSKI, Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia; E-mail: igor.shparlinski@unsw.edu.au

ANDREW V. SUTHERLAND, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; E-mail: drew@math.mit.edu

BARBARA WOHLMUTH, Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany; E-mail: wohlmuth@ma.tum.de
Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík, Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters ... 2563
Charles M. Elliott and Philip J. Herbert, Second order splitting of a class of fourth order PDEs with point constraints ... 2613
Daniel Peterseim and Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media 2649
Weifeng Qiu and Lan Tang, A note on the Monge–Ampère type equations with general source terms ... 2675
Pascal Heid and Thomas P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems .. 2707
Carl-Martin Pfeiler and Dirk Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem ... 2735
Qi Tao, Yan Xu, and Chi-Wang Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives 2753
Charles Curry, Kürusch Ebrahimi-Fard, and Brynjulf Owren, The Magnus expansion and post-Lie algebras ... 2785
Kristin Kirchner, Numerical methods for the deterministic second moment equation of parabolic stochastic PDEs ... 2801
Sheehan Olver and Yuan Xu, Orthogonal polynomials in and on a quadratic surface of revolution ... 2847
Chenzhe Diao and Bin Han, Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators 2867
Nadir Murru and Lea Terracini, On the finiteness and periodicity of the p-adic Jacobi–Perron algorithm ... 2913
Tommy Hofmann and Henri Johnston, Computing isomorphisms between lattices ... 2931
Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves ... 2965
John D. Wiltshire-Gordon, On computing the eventual behavior of an FI-module over the rational numbers ... 2985
Janko Böhm, Simon Keicher, and Yue Ren, Computing GIT-fans with symmetry and the Mori chamber decomposition of $\overline{M}_{0,6}$ 3003
Eliana Duarte and Alexandra Seceleanu, Implicitization of tensor product surfaces via virtual projective resolutions 3023
Matthieu Rosenfeld, How far away must forced letters be so that squares are still avoidable? ... 3057