Low-regularity integrators for nonlinear Dirac equations
HTML articles powered by AMS MathViewer
- by Katharina Schratz, Yan Wang and Xiaofei Zhao;
- Math. Comp. 90 (2021), 189-214
- DOI: https://doi.org/10.1090/mcom/3557
- Published electronically: August 7, 2020
- HTML | PDF | Request permission
Abstract:
In this work, we consider the numerical integration of the nonlinear Dirac equation and the Dirac–Poisson system (NDEs) under rough initial data. We propose an ultra low-regularity integrator (ULI) for solving the NDEs which enables optimal first-order time convergence in $H^r$ for solutions in $H^{r}$, i.e., without requiring any additional regularity on the solution. In contrast to classical methods, a ULI overcomes the numerical loss of derivatives and is therefore more efficient and accurate for approximating low regular solutions. Convergence theorems and the extension of a ULI to second order are established. Numerical experiments confirm the theoretical results and underline the favourable error behaviour of the new method at low regularity compared to classical integration schemes.References
- A. Alvarez and B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A 86 (1981), no. 6-7, 327–332. MR 637021, DOI 10.1016/0375-9601(81)90548-X
- Weizhu Bao, Yongyong Cai, Xiaowei Jia, and Qinglin Tang, Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime, J. Sci. Comput. 71 (2017), no. 3, 1094–1134. MR 3640674, DOI 10.1007/s10915-016-0333-3
- WeiZhu Bao, YongYong Cai, XiaoWei Jia, and Jia Yin, Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime, Sci. China Math. 59 (2016), no. 8, 1461–1494. MR 3528498, DOI 10.1007/s11425-016-0272-y
- Weizhu Bao and Xiang-Gui Li, An efficient and stable numerical method for the Maxwell-Dirac system, J. Comput. Phys. 199 (2004), no. 2, 663–687. MR 2091910, DOI 10.1016/j.jcp.2004.03.003
- Michael Beals and Max Bézard, Low regularity local solutions for field equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 79–124. MR 1373766, DOI 10.1080/03605309608821176
- Philippe Bechouche, Norbert J. Mauser, and Frédéric Poupaud, (Semi)-nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field, Comm. Math. Phys. 197 (1998), no. 2, 405–425. MR 1652738, DOI 10.1007/s002200050457
- Nikolaos Bournaveas, Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension, Discrete Contin. Dyn. Syst. 20 (2008), no. 3, 605–616. MR 2373206, DOI 10.3934/dcds.2008.20.605
- Nikolaos Bournaveas, Local and global solutions for a nonlinear Dirac system, Adv. Differential Equations 9 (2004), no. 5-6, 677–698. MR 2099976
- Nikolaos Bournaveas and Dominic Gibbeson, Low regularity global solutions of the Dirac-Klein-Gordon equations in one space dimension, Differential Integral Equations 19 (2006), no. 2, 211–222. MR 2194504
- Nikolaos Bournaveas, Timothy Candy, and Shuji Machihara, Local and global well posedness for the Chern-Simons-Dirac system in one dimension, Differential Integral Equations 25 (2012), no. 7-8, 699–718. MR 2975691
- D. Brinkman, C. Heitzinger, and P. A. Markowich, A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene. part A, J. Comput. Phys. 257 (2014), no. part A, 318–332. MR 3129537, DOI 10.1016/j.jcp.2013.09.052
- Yongyong Cai and Yan Wang, A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 2, 543–566. MR 3834435, DOI 10.1051/m2an/2018015
- Yongyong Cai and Yan Wang, Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 57 (2019), no. 4, 1602–1624. MR 3978485, DOI 10.1137/18M121931X
- F. Cacciafesta, Dispersive Properties of the Dirac Equation: Strichartz Estimates and the Nonlinear Problem, LAP Lambert Academic Publishing, 2012.
- Timothy Candy, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations 16 (2011), no. 7-8, 643–666. MR 2829499
- Piero D’Ancona, Damiano Foschi, and Sigmund Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 877–899. MR 2341835, DOI 10.4171/JEMS/100
- Piero D’Ancona, Damiano Foschi, and Sigmund Selberg, Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions, J. Hyperbolic Differ. Equ. 4 (2007), no. 2, 295–330. MR 2329387, DOI 10.1142/S0219891607001148
- Piero D’Ancona, Damiano Foschi, and Sigmund Selberg, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math. 132 (2010), no. 3, 771–839. MR 2666908, DOI 10.1353/ajm.0.0118
- V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc. 69 (1978), no. 2, 289–296. MR 463658, DOI 10.1090/S0002-9939-1978-0463658-5
- M. Escobedo and L. Vega, A semilinear Dirac equation in $H^s(\textbf {R}^3)$ for $s>1$, SIAM J. Math. Anal. 28 (1997), no. 2, 338–362. MR 1434039, DOI 10.1137/S0036141095283017
- Yung-Fu Fang, Low regularity solutions for Dirac-Klein-Gordon equations in one space dimension, Electron. J. Differential Equations (2004), No. 102, 19. MR 2108873
- Erwan Faou, Geometric numerical integration and Schrödinger equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2012. MR 2895408, DOI 10.4171/100
- Charles L. Fefferman and Michael I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc. 25 (2012), no. 4, 1169–1220. MR 2947949, DOI 10.1090/S0894-0347-2012-00745-0
- J. de Frutos and J. M. Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys. 83 (1989), no. 2, 407–423. MR 1013060, DOI 10.1016/0021-9991(89)90127-7
- Walter Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381–397. MR 138200, DOI 10.1007/BF01386037
- L. H. Haddad and L. D. Carr, The nonlinear Dirac equation in Bose-Einstein condensates: foundation and symmetries, Phys. D 238 (2009), no. 15, 1413–1421. MR 2542748, DOI 10.1016/j.physd.2009.02.001
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- René Hammer, Walter Pötz, and Anton Arnold, Single-cone real-space finite difference scheme for the time-dependent Dirac equation, J. Comput. Phys. 265 (2014), 50–70. MR 3173135, DOI 10.1016/j.jcp.2014.01.028
- H. Hasegawa, Bound states of the one-dimensional Dirac equation for scalar and vector double square-well potentials, Physica E 59 (2014), 192–201.
- Marlis Hochbruck and Alexander Ostermann, Exponential integrators, Acta Numer. 19 (2010), 209–286. MR 2652783, DOI 10.1017/S0962492910000048
- Martina Hofmanová and Katharina Schratz, An exponential-type integrator for the KdV equation, Numer. Math. 136 (2017), no. 4, 1117–1137. MR 3671599, DOI 10.1007/s00211-016-0859-1
- Zhongyi Huang, Shi Jin, Peter A. Markowich, Christof Sparber, and Chunxiong Zheng, A time-splitting spectral scheme for the Maxwell-Dirac system, J. Comput. Phys. 208 (2005), no. 2, 761–789. MR 2144737, DOI 10.1016/j.jcp.2005.02.026
- Hyungjin Huh and Bora Moon, Low regularity well-posedness for Gross-Neveu equations, Commun. Pure Appl. Anal. 14 (2015), no. 5, 1903–1913. MR 3359550, DOI 10.3934/cpaa.2015.14.1903
- Marvin Knöller, Alexander Ostermann, and Katharina Schratz, A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986. MR 3992056, DOI 10.1137/18M1198375
- Mohammed Lemou, Florian Méhats, and Xiaofei Zhao, Uniformly accurate numerical schemes for the nonlinear Dirac equation in the nonrelativistic limit regime, Commun. Math. Sci. 15 (2017), no. 4, 1107–1128. MR 3659260, DOI 10.4310/CMS.2017.v15.n4.a9
- Christian Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), no. 264, 2141–2153. MR 2429878, DOI 10.1090/S0025-5718-08-02101-7
- Shuji Machihara, Makoto Nakamura, Kenji Nakanishi, and Tohru Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal. 219 (2005), no. 1, 1–20. MR 2108356, DOI 10.1016/j.jfa.2004.07.005
- Shuji Machihara, One dimensional Dirac equation with quadratic nonlinearities, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 277–290. MR 2152391, DOI 10.3934/dcds.2005.13.277
- Robert I. McLachlan and G. Reinout W. Quispel, Splitting methods, Acta Numer. 11 (2002), 341–434. MR 2009376, DOI 10.1017/S0962492902000053
- G. R. Mocken and C. H. Keitel, FFT-split-operator code for solving the Dirac equation in $2+1$ dimensions, Comput. Phys. Commun. 178 (2008), 868–882.
- Alexander Ostermann and Katharina Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math. 18 (2018), no. 3, 731–755. MR 3807360, DOI 10.1007/s10208-017-9352-1
- A. Ostermann, F. Rousset, and K. Schratz, Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity, preprint, 2019.
- Hartmut Pecher, Low regularity well-posedness for the one-dimensional Dirac-Klein-Gordon system, Electron. J. Differential Equations (2006), No. 150, 13. MR 2276575
- Hartmut Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal. 13 (2014), no. 2, 673–685. MR 3117368, DOI 10.3934/cpaa.2014.13.673
- Walter Pötz, Single-cone finite-difference schemes for the $(2+1)$-dimensional Dirac equation in general electromagnetic textures, Phys. Rev. E 96 (2017), no. 5, 053312, 15. MR 3825044, DOI 10.1103/physreve.96.053312
- Walter E. Thirring, A soluble relativistic field theory, Ann. Physics 3 (1958), 91–112. MR 91788, DOI 10.1016/0003-4916(58)90015-0
- Sigmund Selberg and Achenef Tesfahun, Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension, Commun. Contemp. Math. 10 (2008), no. 2, 181–194. MR 2409364, DOI 10.1142/S0219199708002740
- Sigmund Selberg and Achenef Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations 23 (2010), no. 3-4, 265–278. MR 2588476
- Sihong Shao and Huazhong Tang, Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 3, 623–640. MR 2198694, DOI 10.3934/dcdsb.2006.6.623
- Jie Shen, Tao Tang, and Li-Lian Wang, Spectral methods, Springer Series in Computational Mathematics, vol. 41, Springer, Heidelberg, 2011. Algorithms, analysis and applications. MR 2867779, DOI 10.1007/978-3-540-71041-7
- M. Soler, Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev. D 1 (1970), 2766–2769.
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- W. Yi and Y. Cai, Optimal error estimates of finite difference time domain methods for the Klein-Gordon-Dirac system, IMA J. Numer. Anal., 00 (2018), 1–28.
- Wenfan Yi, Xinran Ruan, and Chunmei Su, Optimal resolution methods for the Klein-Gordon-Dirac system in the nonrelativistic limit regime, J. Sci. Comput. 79 (2019), no. 3, 1907–1935. MR 3946482, DOI 10.1007/s10915-019-00919-0
- Jian Xu, Sihong Shao, and Huazhong Tang, Numerical methods for nonlinear Dirac equation, J. Comput. Phys. 245 (2013), 131–149. MR 3066202, DOI 10.1016/j.jcp.2013.03.031
Bibliographic Information
- Katharina Schratz
- Affiliation: Heriot-Watt University and LJLL (UMR 7598), Sorbonne Université, UPMC, 4 place Jussieu 75005 Paris, France
- MR Author ID: 990639
- Email: katharina.schratz@ljll.math.upmc.fr
- Yan Wang
- Affiliation: School of Mathematics and Statistics, Central China Normal University, 430079 Wuhan, People’s Republic of China
- Email: wang.yan@mail.ccnu.edu.cn
- Xiaofei Zhao
- Affiliation: School of Mathematics and Statistics; and Computational Sciences Hubei Key Laboratory, Wuhan University, 430072 Wuhan, People’s Republic of China
- MR Author ID: 1045425
- Email: matzhxf@whu.edu.cn
- Received by editor(s): June 22, 2019
- Received by editor(s) in revised form: March 24, 2020
- Published electronically: August 7, 2020
- Additional Notes: The first author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 850941).
The second author was supported by the Fundamental Research Funds for the Central Universities CCNU19TD010.
The second author is the corresponding author.
The third author was partially supported by the Natural Science Foundation of Hubei Province No. 2019CFA007 and the NSFC 11901440. - © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 189-214
- MSC (2010): Primary 35Q41, 65M12, 65M70
- DOI: https://doi.org/10.1090/mcom/3557
- MathSciNet review: 4166458