Weak discrete maximum principle of finite element methods in convex polyhedra
HTML articles powered by AMS MathViewer
- by Dmitriy Leykekhman and Buyang Li;
- Math. Comp. 90 (2021), 1-18
- DOI: https://doi.org/10.1090/mcom/3560
- Published electronically: July 27, 2020
- HTML | PDF | Request permission
Abstract:
We prove that the Galerkin finite element solution $u_h$ of the Laplace equation in a convex polyhedron $\varOmega$, with a quasi-uniform tetrahedral partition of the domain and with finite elements of polynomial degree $r\geqslant 1$, satisfies the following weak maximum principle: \begin{align*} \left \|u_{h}\right \|_{L^{\infty }(\varOmega )} \leqslant C\left \|u_{h}\right \|_{L^{\infty }(\partial \varOmega )} , \end{align*} with a constant $C$ independent of the mesh size $h$. By using this result, we show that the Ritz projection operator $R_h$ is stable in $L^\infty$ norm uniformly in $h$ for $r\geq 2$, i.e., \begin{align*} \|R_hu\|_{L^{\infty }(\varOmega )} \leqslant C\|u\|_{L^{\infty }(\varOmega )} . \end{align*} Thus we remove a logarithmic factor appearing in the previous results for convex polyhedral domains.References
- Thomas Apel, Arnd Rösch, and Dieter Sirch, $L^\infty$-error estimates on graded meshes with application to optimal control, SIAM J. Control Optim. 48 (2009), no. 3, 1771–1796. MR 2516188, DOI 10.1137/080731724
- Thomas Apel, Max Winkler, and Johannes Pfefferer, Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains, IMA J. Numer. Anal. 38 (2018), no. 4, 1984–2025. MR 3867389, DOI 10.1093/imanum/drx059
- Niklas Behringer, Dmitriy Leykekhman, and Boris Vexler, Global and local pointwise error estimates for finite element approximations to the Stokes problem on convex polyhedra, SIAM J. Numer. Anal. 58 (2020), no. 3, 1531–1555. MR 4101369, DOI 10.1137/19M1274456
- Jan Brandts, Sergey Korotov, Michal Křížek, and Jakub Šolc, On nonobtuse simplicial partitions, SIAM Rev. 51 (2009), no. 2, 317–335. MR 2505583, DOI 10.1137/060669073
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Constantin Christof, $L^\infty$-error estimates for the obstacle problem revisited, Calcolo 54 (2017), no. 4, 1243–1264. MR 3735814, DOI 10.1007/s10092-017-0228-1
- Philippe G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math. 4 (1970), 338–352. MR 292317, DOI 10.1007/BF01844166
- P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. MR 375802, DOI 10.1016/0045-7825(73)90019-4
- Monique Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory 15 (1992), no. 2, 227–261. MR 1147281, DOI 10.1007/BF01204238
- Andrei Drăgănescu, Todd F. Dupont, and L. Ridgway Scott, Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp. 74 (2005), no. 249, 1–23. MR 2085400, DOI 10.1090/S0025-5718-04-01651-5
- Alan Demlow, Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quadilinear elliptic problems, SIAM J. Numer. Anal. 44 (2006), no. 2, 494–514. MR 2218957, DOI 10.1137/040610064
- Jens Frehse and Rolf Rannacher, Asymptotic $L^{\infty }$-error estimates for linear finite element approximations of quasilinear boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 2, 418–431. MR 502037, DOI 10.1137/0715026
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 (2009), no. 2, 221–243. MR 2495783, DOI 10.1007/s00211-009-0213-y
- W. Höhn and H.-D. Mittelmann, Some remarks on the discrete maximum-principle for finite elements of higher order, Computing 27 (1981), no. 2, 145–154 (English, with German summary). MR 632125, DOI 10.1007/BF02243548
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- T. Kashiwabara and T. Kemmochi, Maximum norm error estimates for the finite element approximation of parabolic problems on smooth domains, Preprint, 2018, arXiv:1805.01336.
- Sergey Korotov and Michal Křížek, Acute type refinements of tetrahedral partitions of polyhedral domains, SIAM J. Numer. Anal. 39 (2001), no. 2, 724–733. MR 1860255, DOI 10.1137/S003614290037040X
- Sergey Korotov, Michal Křížek, and Pekka Neittaanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comp. 70 (2001), no. 233, 107–119. MR 1803125, DOI 10.1090/S0025-5718-00-01270-9
- Dmitriy Leykekhman and Boris Vexler, Finite element pointwise results on convex polyhedral domains, SIAM J. Numer. Anal. 54 (2016), no. 2, 561–587. MR 3470741, DOI 10.1137/15M1013912
- Dmitriy Leykekhman and Boris Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems, SIAM J. Numer. Anal. 54 (2016), no. 3, 1365–1384. MR 3498514, DOI 10.1137/15M103412X
- Buyang Li, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra, Math. Comp. 88 (2019), no. 315, 1–44. MR 3854049, DOI 10.1090/mcom/3316
- Dominik Meidner and Boris Vexler, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 6, 2307–2325. MR 3905187, DOI 10.1051/m2an/2018040
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Vitoriano Ruas Santos, On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 473–491. MR 672072
- Alfred H. Schatz, A weak discrete maximum principle and stability of the finite element method in $L_{\infty }$ on plane polygonal domains. I, Math. Comp. 34 (1980), no. 149, 77–91. MR 551291, DOI 10.1090/S0025-5718-1980-0551291-3
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414–442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373–389. MR 1804662, DOI 10.1007/s002110000184
- Reiner Vanselow, About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation, Appl. Math. 46 (2001), no. 1, 13–28. MR 1808427, DOI 10.1023/A:1013775420323
- Junping Wang and Ran Zhang, Maximum principles for $P1$-conforming finite element approximations of quasi-linear second order elliptic equations, SIAM J. Numer. Anal. 50 (2012), no. 2, 626–642. MR 2914278, DOI 10.1137/110833737
- Jinchao Xu and Ludmil Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68 (1999), no. 228, 1429–1446. MR 1654022, DOI 10.1090/S0025-5718-99-01148-5
Bibliographic Information
- Dmitriy Leykekhman
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- MR Author ID: 680657
- Email: dmitriy.leykekhman@uconn.edu
- Buyang Li
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- MR Author ID: 910552
- Email: buyang.li@polyu.edu.hk
- Received by editor(s): September 18, 2019
- Received by editor(s) in revised form: February 29, 2020, and April 13, 2020
- Published electronically: July 27, 2020
- Additional Notes: This work was partially supported by NSF DMS-1913133 and a Hong Kong RGC grant (project no. 15300519).
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 1-18
- MSC (2010): Primary 65N12, 65N30
- DOI: https://doi.org/10.1090/mcom/3560
- MathSciNet review: 4166450