Upper bounds for the usual measures of totally positive algebraic integers with house less than 5.8
HTML articles powered by AMS MathViewer
- by V. Flammang;
- Math. Comp. 90 (2021), 379-388
- DOI: https://doi.org/10.1090/mcom/3580
- Published electronically: September 8, 2020
- HTML | PDF | Request permission
Abstract:
Previously, we established lower bounds for the usual measures (trace, length, Mahler measure) of totally positive algebraic integers, i.e., all of whose conjugates are positive real numbers. We used the method of explicit auxiliary functions and we noticed that the house of most of the totally positive polynomials involved in our functions are bounded by 5.8. Thanks to this observation, we are able to use the same method and give upper bounds for the usual measures of totally positive algebraic integers with house bounded by this value. To our knowledge, theses upper bounds are the first results of this kind.References
- Julián Aguirre, Mikel Bilbao, and Juan Carlos Peral, The trace of totally positive algebraic integers, Math. Comp. 75 (2006), no. 253, 385–393. MR 2176405, DOI 10.1090/S0025-5718-05-01776-X
- Julián Aguirre and Juan Carlos Peral, The trace problem for totally positive algebraic integers, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 1–19. With an appendix by Jean-Pierre Serre. MR 2428512, DOI 10.1017/CBO9780511721274.003
- Julián Aguirre and Juan Carlos Peral, The integer Chebyshev constant of Farey intervals, Publ. Mat. Proceedings of the Primeras Jornadas de Teoría de Números (2007), 11–27. MR 2499685, DOI 10.5565/PUBLMAT_{P}JTN05_{0}1
- Julián Aguirre and Juan Carlos Peral, The trace problem for totally positive algebraic integers, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 1–19. With an appendix by Jean-Pierre Serre. MR 2428512, DOI 10.1017/CBO9780511721274.003
- Xiaoqian Dong and Qiang Wu, The absolute trace of totally positive reciprocal algebraic integers, J. Number Theory 170 (2017), 66–74. MR 3541699, DOI 10.1016/j.jnt.2016.06.016
- V. Flammang, Une nouvelle minoration pour la trace absolue des entiers algébriques totalement positifs, available at: arXiv:1907.09407 (2019).
- V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter, Math. Comp. 78 (2009), no. 266, 1119–1125. MR 2476574, DOI 10.1090/S0025-5718-08-02120-0
- V. Flammang, Comparaison de deux mesures de polynômes, Canad. Math. Bull. 38 (1995), no. 4, 438–444 (French, with French summary). MR 1360593, DOI 10.4153/CMB-1995-064-5
- V. Flammang, On the absolute length of polynomials having all zeros in a sector, J. Number Theory 143 (2014), 385–401. MR 3227355, DOI 10.1016/j.jnt.2014.04.002
- V. Flammang, The Mahler measure and its areal analog for totally positive algebraic integers, J. Number Theory 151 (2015), 211–222. MR 3314210, DOI 10.1016/j.jnt.2014.12.023
- L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173–175 (German). MR 1578994, DOI 10.1515/crll.1857.53.173
- Yanhua Liang and Qiang Wu, The trace problem for totally positive algebraic integers, J. Aust. Math. Soc. 90 (2011), no. 3, 341–354. MR 2833305, DOI 10.1017/S1446788711001030
- Quanwu Mu and Qiang Wu, The measure of totally positive algebraic integers, J. Number Theory 133 (2013), no. 1, 12–19. MR 2981394, DOI 10.1016/j.jnt.2012.06.003
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399. MR 360515, DOI 10.4064/aa-24-4-385-399
- I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), no. 4, 377–402 (German). MR 1544303, DOI 10.1007/BF01465096
- Carl Ludwig Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. (2) 46 (1945), 302–312. MR 12092, DOI 10.2307/1969025
- C. J. Smyth, On the measure of totally real algebraic integers. II, Math. Comp. 37 (1981), no. 155, 205–208. MR 616373, DOI 10.1090/S0025-5718-1981-0616373-7
- C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp. 42 (1984), no. 166, 663–681. MR 736460, DOI 10.1090/S0025-5718-1984-0736460-5
- Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901–911. MR 1954974, DOI 10.1090/S0025-5718-02-01442-4
Bibliographic Information
- V. Flammang
- Affiliation: UMR CNRS 7502, IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, 3 rue Augustin Fresnel BP 45112 57073 Metz cedex 3 France
- MR Author ID: 360354
- Email: valerie.flammang@univ-lorraine.fr
- Received by editor(s): April 21, 2020
- Published electronically: September 8, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 379-388
- MSC (2010): Primary 11C08, 11R06, 11Y40
- DOI: https://doi.org/10.1090/mcom/3580
- MathSciNet review: 4166465