Pointwise error estimates for $C^0$ interior penalty approximation of biharmonic problems
HTML articles powered by AMS MathViewer
- by D. Leykekhman;
- Math. Comp. 90 (2021), 41-63
- DOI: https://doi.org/10.1090/mcom/3596
- Published electronically: October 8, 2020
- HTML | PDF | Request permission
Abstract:
The aim of this paper is to derive pointwise global and local best approximation type error estimates for biharmonic problems using the $C^0$ interior penalty method. The analysis uses the technique of dyadic decompositions of the domain, which is assumed to be a convex polygon. The proofs require local energy estimates and new pointwise Green’s function estimates for the continuous problem which has independent interest.References
- Thomas Apel, Olaf Benedix, Dieter Sirch, and Boris Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side, SIAM J. Numer. Anal. 49 (2011), no. 3, 992–1005. MR 2812554, DOI 10.1137/090778018
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556–581. MR 595625, DOI 10.1002/mma.1670020416
- Susanne C. Brenner and Li-Yeng Sung, $C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22/23 (2005), 83–118. MR 2142191, DOI 10.1007/s10915-004-4135-7
- Zhangxin Chen and Hongsen Chen, Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 3, 1146–1166. MR 2113680, DOI 10.1137/S0036142903421527
- Alan Demlow, Johnny Guzmán, and Alfred H. Schatz, Local energy estimates for the finite element method on sharply varying grids, Math. Comp. 80 (2011), no. 273, 1–9. MR 2728969, DOI 10.1090/S0025-5718-2010-02353-1
- Jim Douglas Jr., Todd Dupont, Peter Percell, and Ridgway Scott, A family of $C^{1}$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems, RAIRO Anal. Numér. 13 (1979), no. 3, 227–255 (English, with French summary). MR 543934, DOI 10.1051/m2an/1979130302271
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- Johnny Guzmán, Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems, Math. Comp. 75 (2006), no. 255, 1067–1085. MR 2219019, DOI 10.1090/S0025-5718-06-01823-0
- V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 226187
- Vladimir Gilelevič Maz′ya and Jürgen Rossmann, On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains, Ann. Global Anal. Geom. 9 (1991), no. 3, 253–303. MR 1143406, DOI 10.1007/BF00136815
- V. G. Maz′ya and B. A. Plamenevskiĭ, On the maximum principle for the biharmonic equation in a domain with conical points, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1981), 52–59 (Russian). MR 614817
- L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aeronautical Quarterly 19 (1968), no. 2, 149–169., DOI 10.1017/S0001925900004546
- Trygve K. Nilssen, Xue-Cheng Tai, and Ragnar Winther, A robust nonconforming $H^2$-element, Math. Comp. 70 (2001), no. 234, 489–505. MR 1709156, DOI 10.1090/S0025-5718-00-01230-8
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Rolf Rannacher, On nonconforming and mixed finite element method for plate bending problems. The linear case, RAIRO Anal. Numér. 13 (1979), no. 4, 369–387 (English, with French summary). MR 555385, DOI 10.1051/m2an/1979130403691
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414–442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- Ridgway Scott, Finite element convergence for singular data, Numer. Math. 21 (1973/74), 317–327. MR 337032, DOI 10.1007/BF01436386
- Zhong Ci Shi, On the convergence of the incomplete biquadratic nonconforming plate element, Math. Numer. Sinica 8 (1986), no. 1, 53–62 (Chinese, with English summary). MR 864031
- V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373–389. MR 1804662, DOI 10.1007/s002110000184
- Lars B. Wahlbin, Local behavior in finite element methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 353–522. MR 1115238
- Ming Wang, $L^\infty$ error estimates of nonconforming finite elements for the biharmonic equation, J. Comput. Math. 11 (1993), no. 3, 276–288. MR 1229633
Bibliographic Information
- D. Leykekhman
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- MR Author ID: 680657
- Email: dmitriy.leykekhman@uconn.edu
- Received by editor(s): July 21, 2019
- Received by editor(s) in revised form: August 16, 2020, and August 29, 2020
- Published electronically: October 8, 2020
- Additional Notes: The author was partially supported by NSF grant DMS-1913133.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 41-63
- MSC (2020): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/mcom/3596
- MathSciNet review: 4166452