On the uniform accuracy of implicit-explicit backward differentiation formulas (IMEX-BDF) for stiff hyperbolic relaxation systems and kinetic equations
HTML articles powered by AMS MathViewer
- by Jingwei Hu and Ruiwen Shu;
- Math. Comp. 90 (2021), 641-670
- DOI: https://doi.org/10.1090/mcom/3602
- Published electronically: November 24, 2020
- HTML | PDF | Request permission
Abstract:
Many hyperbolic and kinetic equations contain a non-stiff convection/transport part and a stiff relaxation/collision part (characterized by the relaxation or mean free time $\varepsilon$). To solve this type of problems, implicit-explicit (IMEX) multistep methods have been widely used and their performance is understood well in the non-stiff regime ($\varepsilon =O(1)$) and limiting regime ($\varepsilon \rightarrow 0$). However, in the intermediate regime (say, $\varepsilon =O(\Delta t)$), uniform accuracy has been reported numerically without a complete theoretical justification (except some asymptotic or stability analysis). In this work, we prove the uniform accuracy – an optimal a priori error bound – of a class of IMEX multistep methods, IMEX backward differentiation formulas (IMEX-BDF), for linear hyperbolic systems with stiff relaxation. The proof is based on the energy estimate with a new multiplier technique. For nonlinear hyperbolic and kinetic equations, we numerically verify the same property using a series of examples.References
- Georgios Akrivis and Emmanuil Katsoprinakis, Backward difference formulae: new multipliers and stability properties for parabolic equations, Math. Comp. 85 (2016), no. 301, 2195–2216. MR 3511279, DOI 10.1090/mcom3055
- Georgios Akrivis and Christian Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math. 131 (2015), no. 4, 713–735. MR 3422451, DOI 10.1007/s00211-015-0702-0
- Giacomo Albi, Giacomo Dimarco, and Lorenzo Pareschi, Implicit-explicit multistep methods for hyperbolic systems with multiscale relaxation, SIAM J. Sci. Comput. 42 (2020), no. 4, A2402–A2435. MR 4137043, DOI 10.1137/19M1303290
- Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167. Special issue on time integration (Amsterdam, 1996). MR 1485812, DOI 10.1016/S0168-9274(97)00056-1
- Uri M. Ascher, Steven J. Ruuth, and Brian T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995), no. 3, 797–823. MR 1335656, DOI 10.1137/0732037
- Mounir Bennoune, Mohammed Lemou, and Luc Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys. 227 (2008), no. 8, 3781–3803. MR 2403867, DOI 10.1016/j.jcp.2007.11.032
- P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (1954), 511–525.
- Sebastiano Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal. 45 (2007), no. 4, 1600–1621. MR 2338401, DOI 10.1137/060656929
- Sebastiano Boscarino, On an accurate third order implicit-explicit Runge-Kutta method for stiff problems, Appl. Numer. Math. 59 (2009), no. 7, 1515–1528. MR 2512274, DOI 10.1016/j.apnum.2008.10.003
- S. Boscarino and L. Pareschi, On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws, J. Comput. Appl. Math. 316 (2017), 60–73. MR 3588728, DOI 10.1016/j.cam.2016.08.027
- Sebastiano Boscarino and Giovanni Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput. 31 (2009), no. 3, 1926–1945. MR 2516139, DOI 10.1137/080713562
- C. Cercignani, The Boltzmann equation: some mathematical aspects, Kinetic theory and gas dynamics, CISM Courses and Lect., vol. 293, Springer, Vienna, 1988, pp. 1–36. MR 1007992, DOI 10.1007/978-1-4612-1039-9
- P. Chartier, M. Lemou, F. Mehats, and G. Vilmart, A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations, Found. Comput. Math. https://doi.org/10.1007/s10208-019-09413-3 (2019).
- Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787–830. MR 1280989, DOI 10.1002/cpa.3160470602
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI 10.1007/BF01396412
- Germund Dahlquist, $G$-stability is equivalent to $A$-stability, BIT 18 (1978), no. 4, 384–401. MR 520750, DOI 10.1007/BF01932018
- Giacomo Dimarco and Lorenzo Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal. 51 (2013), no. 2, 1064–1087. MR 3036998, DOI 10.1137/12087606X
- Giacomo Dimarco and Lorenzo Pareschi, Implicit-explicit linear multistep methods for stiff kinetic equations, SIAM J. Numer. Anal. 55 (2017), no. 2, 664–690. MR 3623210, DOI 10.1137/16M1063824
- Francis Filbet and Shi Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys. 229 (2010), no. 20, 7625–7648. MR 2674294, DOI 10.1016/j.jcp.2010.06.017
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd ed., Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1996. Stiff and differential-algebraic problems. MR 1439506, DOI 10.1007/978-3-642-05221-7
- Jan S. Hesthaven, Sigal Gottlieb, and David Gottlieb, Spectral methods for time-dependent problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21, Cambridge University Press, Cambridge, 2007. MR 2333926, DOI 10.1017/CBO9780511618352
- Lowell H. Holway Jr., Kinetic theory of shock structure using an ellipsoidal distribution function, Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964) Academic Press, New York-London, 1965, pp. 193–215. MR 204022
- Willem Hundsdorfer and Steven J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys. 225 (2007), no. 2, 2016–2042. MR 2349693, DOI 10.1016/j.jcp.2007.03.003
- Juhi Jang, Fengyan Li, Jing-Mei Qiu, and Tao Xiong, Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal. 52 (2014), no. 4, 2048–2072. MR 3248034, DOI 10.1137/130938955
- Shi Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys. 122 (1995), no. 1, 51–67. MR 1358521, DOI 10.1006/jcph.1995.1196
- Shi Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. 21 (1999), no. 2, 441–454. MR 1718639, DOI 10.1137/S1064827598334599
- Shi Jin and Zhou Ping Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235–276. MR 1322811, DOI 10.1002/cpa.3160480303
- Jian-Guo Liu and Luc Mieussens, Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit, SIAM J. Numer. Anal. 48 (2010), no. 4, 1474–1491. MR 2684343, DOI 10.1137/090772770
- Tai-Ping Liu and Shih-Hsien Yu, Boltzmann equation: micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys. 246 (2004), no. 1, 133–179. MR 2044894, DOI 10.1007/s00220-003-1030-2
- Christian Lubich, Dhia Mansour, and Chandrasekhar Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal. 33 (2013), no. 4, 1365–1385. MR 3119720, DOI 10.1093/imanum/drs044
- Roberto Natalini, Recent results on hyperbolic relaxation problems, Analysis of systems of conservation laws (Aachen, 1997) Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 99, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 128–198. MR 1679940
- Olavi Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981), no. 4, 377–423. MR 636736, DOI 10.1080/01630568108816097
- Lorenzo Pareschi and Giovanni Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (2005), no. 1-2, 129–155. MR 2231946, DOI 10.1007/s10915-004-4636-4
- E. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dynamics 3 (1968), 95–96.
- Chi-Wang Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997) Lecture Notes in Math., vol. 1697, Springer, Berlin, 1998, pp. 325–432. MR 1728856, DOI 10.1007/BFb0096355
- Henning Struchtrup, Macroscopic transport equations for rarefied gas flows, Interaction of Mechanics and Mathematics, Springer, Berlin, 2005. Approximation methods in kinetic theory. MR 2287368
- Cédric Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71–305. MR 1942465, DOI 10.1016/S1874-5792(02)80004-0
Bibliographic Information
- Jingwei Hu
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 933436
- Email: jingweihu@purdue.edu
- Ruiwen Shu
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- MR Author ID: 1204137
- Email: rshu@cscamm.umd.edu
- Received by editor(s): January 24, 2020
- Received by editor(s) in revised form: June 24, 2020, August 13, 2020, and August 17, 2020
- Published electronically: November 24, 2020
- Additional Notes: The first author’s research was supported in part by NSF grant DMS-1620250 and NSF CAREER grant DMS-1654152. The second author’s research was supported in part by NSF grants DMS-1613911, RNMS-1107444 (KI-Net) and ONR grant N00014-1812465.
- © Copyright 2020 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 641-670
- MSC (2020): Primary 35L03, 82C40, 65L04, 65L06, 65M12
- DOI: https://doi.org/10.1090/mcom/3602
- MathSciNet review: 4194158