Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation
HTML articles powered by AMS MathViewer
- by Georgios Akrivis, Michael Feischl, Balázs Kovács and Christian Lubich;
- Math. Comp. 90 (2021), 995-1038
- DOI: https://doi.org/10.1090/mcom/3597
- Published electronically: February 26, 2021
- HTML | PDF | Request permission
Abstract:
For the Landau–Lifshitz–Gilbert (LLG) equation of micromagnetics we study linearly implicit backward difference formula (BDF) time discretizations up to order $5$ combined with higher-order non-conforming finite element space discretizations, which are based on the weak formulation due to Alouges but use approximate tangent spaces that are defined by $L^2$-averaged instead of nodal orthogonality constraints. We prove stability and optimal-order error bounds in the situation of a sufficiently regular solution. For the BDF methods of orders $3$ to $5$, this requires that the damping parameter in the LLG equations be above a positive threshold; this condition is not needed for the A-stable methods of orders $1$ and $2$, for which furthermore a discrete energy inequality irrespective of solution regularity is proved.References
- Georgios Akrivis and Emmanuil Katsoprinakis, Backward difference formulae: new multipliers and stability properties for parabolic equations, Math. Comp. 85 (2016), no. 301, 2195–2216. MR 3511279, DOI 10.1090/mcom3055
- Georgios Akrivis, Buyang Li, and Christian Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp. 86 (2017), no. 306, 1527–1552. MR 3626527, DOI 10.1090/mcom/3228
- Georgios Akrivis and Christian Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math. 131 (2015), no. 4, 713–735. MR 3422451, DOI 10.1007/s00211-015-0702-0
- François Alouges, A new finite element scheme for Landau-Lifchitz equations, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 2, 187–196. MR 2379897, DOI 10.3934/dcdss.2008.1.187
- François Alouges and Pascal Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism, Math. Models Methods Appl. Sci. 16 (2006), no. 2, 299–316. MR 2210092, DOI 10.1142/S0218202506001169
- François Alouges, Evaggelos Kritsikis, Jutta Steiner, and Jean-Christophe Toussaint, A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation, Numer. Math. 128 (2014), no. 3, 407–430. MR 3268842, DOI 10.1007/s00211-014-0615-3
- Rong An, Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation, J. Sci. Comput. 69 (2016), no. 1, 1–27. MR 3542789, DOI 10.1007/s10915-016-0181-1
- Claudio Baiocchi and Michel Crouzeix, On the equivalence of $A$-stability and $G$-stability, Appl. Numer. Math. 5 (1989), no. 1-2, 19–22. Recent theoretical results in numerical ordinary differential equations. MR 979543, DOI 10.1016/0168-9274(89)90020-2
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- E. Barati, M. Cinal, D. M. Edwards, and A. Umerski, Gilbert damping in magnetic layered systems, Phys. Rev. B 90 (2014), 014420.
- Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal. 44 (2006), no. 4, 1405–1419. MR 2257110, DOI 10.1137/050631070
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- P. Ciarlet Jr., Jianguo Huang, and Jun Zou, Some observations on generalized saddle-point problems, SIAM J. Matrix Anal. Appl. 25 (2003), no. 1, 224–236. MR 2002909, DOI 10.1137/S0895479802410827
- Ivan Cimrák, Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field, IMA J. Numer. Anal. 25 (2005), no. 3, 611–634. MR 2153750, DOI 10.1093/imanum/dri011
- Ivan Cimrák, A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism, Arch. Comput. Methods Eng. 15 (2008), no. 3, 277–309. MR 2430351, DOI 10.1007/s11831-008-9021-2
- Germund Dahlquist, $G$-stability is equivalent to $A$-stability, BIT 18 (1978), no. 4, 384–401. MR 520750, DOI 10.1007/BF01932018
- Giovanni Di Fratta, Carl-Martin Pfeiler, Dirk Praetorius, Michele Ruggeri, and Bernhard Stiftner, Linear second-order IMEX-type integrator for the (eddy current) Landau-Lifshitz-Gilbert equation, IMA J. Numer. Anal. 40 (2020), no. 4, 2802–2838. MR 4167063, DOI 10.1093/imanum/drz046
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193–197. MR 383789, DOI 10.1007/BF01400302
- Michael Feischl and Thanh Tran, The eddy current–LLG equations: FEM-BEM coupling and a priori error estimates, SIAM J. Numer. Anal. 55 (2017), no. 4, 1786–1819. MR 3679317, DOI 10.1137/16M1065161
- Michael Feischl and Thanh Tran, Existence of regular solutions of the Landau-Lifshitz-Gilbert equation in 3D with natural boundary conditions, SIAM J. Math. Anal. 49 (2017), no. 6, 4470–4490. MR 3723324, DOI 10.1137/16M1103427
- Huadong Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation, SIAM J. Numer. Anal. 52 (2014), no. 5, 2574–2593. MR 3273326, DOI 10.1137/130936476
- I. Garate and A. H. MacDonald, Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets, Phys. Rev. B 80 (2009), 134403.
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Boling Guo and Shijin Ding, Landau-Lifshitz equations, Frontiers of Research with the Chinese Academy of Sciences, vol. 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2432099, DOI 10.1142/9789812778765
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic problems; Second revised edition, paperback. MR 2657217, DOI 10.1007/978-3-642-05221-7
- S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 7 (1990), no. 5, 461–476 (French, with English summary). MR 1138533, DOI 10.1016/S0294-1449(16)30287-6
- Balázs Kovács, Buyang Li, and Christian Lubich, A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math. 143 (2019), no. 4, 797–853. MR 4026373, DOI 10.1007/s00211-019-01074-2
- Balázs Kovács and Christian Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal. 37 (2017), no. 1, 1–39. MR 3614879, DOI 10.1093/imanum/drw015
- E. Kritsikis, A. Vaysset, L. D. Buda-Prejbeanu, F. Alouges, and J.-C. Toussaint, Beyond first-order finite element schemes in micromagnetics, J. Comput. Phys. 256 (2014), 357–366. MR 3117413, DOI 10.1016/j.jcp.2013.08.035
- Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. MR 1437144
- Christian Lubich, Dhia Mansour, and Chandrasekhar Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal. 33 (2013), no. 4, 1365–1385. MR 3119720, DOI 10.1093/imanum/drs044
- Olavi Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981), no. 4, 377–423. MR 636736, DOI 10.1080/01630568108816097
- Dirk Praetorius, Michele Ruggeri, and Bernhard Stiftner, Convergence of an implicit-explicit midpoint scheme for computational micromagnetics, Comput. Math. Appl. 75 (2018), no. 5, 1719–1738. MR 3766546, DOI 10.1016/j.camwa.2017.11.028
- Andreas Prohl, Computational micromagnetism, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 2001. MR 1885923, DOI 10.1007/978-3-663-09498-2
- D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, and J. J. Miles, Time resolved micromagnetics using a preconditioned time integration method, J. Magn. Magn. Mater. 248 (2002), 298–311.
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- D. Thonig and J. Henk, Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality, New J. Phys. 16 (2014), 013032.
Bibliographic Information
- Georgios Akrivis
- Affiliation: Department of Computer Science & Engineering, University of Ioannina, 451 10 Ioannina, Greece; Institute of Applied and Computational Mathematics, FORTH, 700 13 Heraklion, Crete, Greece
- MR Author ID: 24080
- Email: akrivis@cse.uoi.gr
- Michael Feischl
- Affiliation: Institute for Analysis and Scientific Computing (E 101), Technical University Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
- MR Author ID: 965785
- Email: michael.feischl@tuwien.ac.at
- Balázs Kovács
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle, D-72076 Tübingen, Germany
- ORCID: 0000-0001-9872-3474
- Email: kovacs@na.uni-tuebingen.de
- Christian Lubich
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle, D-72076 Tübingen, Germany
- MR Author ID: 116445
- Email: lubich@na.uni-tuebingen.de
- Received by editor(s): March 13, 2019
- Received by editor(s) in revised form: March 14, 2020
- Published electronically: February 26, 2021
- Additional Notes: The work of the second, third, and fourth authors were supported by Deutsche Forschungsgemeinschaft – Project-ID 258734477 – SFB 1173.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 995-1038
- MSC (2020): Primary 65M12, 65M15; Secondary 65L06
- DOI: https://doi.org/10.1090/mcom/3597
- MathSciNet review: 4232216