Semi-explicit discretization schemes for weakly coupled elliptic-parabolic problems
HTML articles powered by AMS MathViewer
- by R. Altmann, R. Maier and B. Unger;
- Math. Comp. 90 (2021), 1089-1118
- DOI: https://doi.org/10.1090/mcom/3608
- Published electronically: March 3, 2021
- HTML | PDF | Request permission
Abstract:
We prove first-order convergence of the semi-explicit Euler scheme combined with a finite element discretization in space for elliptic-parabolic problems which are weakly coupled. This setting includes poroelasticity, thermoelasticity, as well as multiple-network models used in medical applications. The semi-explicit approach decouples the system such that each time step requires the solution of two small and well-structured linear systems rather than the solution of one large system. The decoupling improves the computational efficiency without decreasing the convergence rates. The presented convergence proof is based on an interpretation of the scheme as an implicit method applied to a constrained partial differential equation with delay term. Here, the delay time equals the used step size. This connection also allows a deeper understanding of the weak coupling condition, which we accomplish to quantify explicitly.References
- Robert Altmann, Eric Chung, Roland Maier, Daniel Peterseim, and Sai-Mang Pun, Computational multiscale methods for linear heterogeneous poroelasticity, J. Comput. Math. 38 (2020), no. 1, 41–57. MR 4076465, DOI 10.4208/jcm.1902-m2018-0186
- Robert Altmann and Jan Heiland, Regularization and Rothe discretization of semi-explicit operator DAEs, Int. J. Numer. Anal. Model. 15 (2018), no. 3, 452–478. MR 3783862
- R. Altmann. Regularization and Simulation of Constrained Partial Differential Equations. Dissertation, Technische Universität Berlin, 2015.
- R. Altmann and C. Zimmer, On the smoothing property of linear delay partial differential equations, J. Math. Anal. Appl. 467 (2018), no. 2, 916–934. MR 3842412, DOI 10.1016/j.jmaa.2018.07.049
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Jakub Wiktor Both, Manuel Borregales, Jan Martin Nordbotten, Kundan Kumar, and Florin Adrian Radu, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett. 68 (2017), 101–108. MR 3614285, DOI 10.1016/j.aml.2016.12.019
- K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, Classics in Applied Mathematics, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Revised and corrected reprint of the 1989 original. MR 1363258
- A. Bellen, N. Guglielmi, and M. Zennaro, On the contractivity and asymptotic stability of systems of delay differential equations of neutral type, BIT 39 (1999), no. 1, 1–24. MR 1682432, DOI 10.1023/A:1022361006452
- M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12(2):155–164, 1941.
- M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys. 27 (1956), 240–253. MR 77441
- Dietrich Braess, Finite elements, 3rd ed., Cambridge University Press, Cambridge, 2007. Theory, fast solvers, and applications in elasticity theory; Translated from the German by Larry L. Schumaker. MR 2322235, DOI 10.1017/CBO9780511618635
- Zhong-Zhi Bai and Xi Yang, On convergence conditions of waveform relaxation methods for linear differential-algebraic equations, J. Comput. Appl. Math. 235 (2011), no. 8, 2790–2804. MR 2763186, DOI 10.1016/j.cam.2010.11.031
- Alfredo Bellen and Marino Zennaro, Numerical methods for delay differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003. MR 1997488, DOI 10.1093/acprof:oso/9780198506546.001.0001
- Stephen L. Campbell, Singular linear systems of differential equations with delays, Applicable Anal. 11 (1980), no. 2, 129–136. MR 599261, DOI 10.1080/00036818008839326
- Philippe G. Ciarlet, Mathematical elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity. MR 936420
- W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, Hoboken, NJ, ninth edition, 2014.
- E. Detournay and A. H. D. Cheng, Fundamentals of poroelasticity, Analysis and design methods, 113–171, Elsevier, 1993.
- R. G. Durán, Mixed finite element methods, Mixed Finite Elements, Compatibility Conditions, and Applications, 1–44, Springer, 2008.
- Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 353–375. MR 2512500, DOI 10.1051/m2an:2008048
- Etienne Emmrich and Volker Mehrmann, Operator differential-algebraic equations arising in fluid dynamics, Comput. Methods Appl. Math. 13 (2013), no. 4, 443–470. MR 3107356, DOI 10.1515/cmam-2013-0018
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Shubin Fu, Robert Altmann, Eric T. Chung, Roland Maier, Daniel Peterseim, and Sai-Mang Pun, Computational multiscale methods for linear poroelasticity with high contrast, J. Comput. Phys. 395 (2019), 286–297. MR 3969190, DOI 10.1016/j.jcp.2019.06.027
- Guosheng Fu, A high-order HDG method for the Biot’s consolidation model, Comput. Math. Appl. 77 (2019), no. 1, 237–252. MR 3907413, DOI 10.1016/j.camwa.2018.09.029
- Keqin Gu, Vladimir L. Kharitonov, and Jie Chen, Stability of time-delay systems, Control Engineering, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 3075002, DOI 10.1007/978-1-4612-0039-0
- Vivette Girault, Kundan Kumar, and Mary F. Wheeler, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci. 20 (2016), no. 5, 997–1011. MR 3544035, DOI 10.1007/s10596-016-9573-4
- Qingguo Hong and Johannes Kraus, Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal. 48 (2018), 202–226. MR 3820123, DOI 10.1553/etna_{v}ol48s202
- Qingguo Hong, Johannes Kraus, Maria Lymbery, and Fadi Philo, Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models, Numer. Linear Algebra Appl. 26 (2019), no. 4, e2242, 25. MR 3979954, DOI 10.1002/nla.2242
- Xiaozhe Hu, Carmen Rodrigo, Francisco J. Gaspar, and Ludmil T. Zikatanov, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity, J. Comput. Appl. Math. 310 (2017), 143–154. MR 3544596, DOI 10.1016/j.cam.2016.06.003
- Guoliang Ju, Mingchao Cai, Jingzhi Li, and Jing Tian, Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation, Math. Comput. Simulation 177 (2020), 385–403. MR 4101493, DOI 10.1016/j.matcom.2020.04.027
- Peter Kunkel and Volker Mehrmann, Differential-algebraic equations, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006. Analysis and numerical solution. MR 2225970, DOI 10.4171/017
- J. Kim, H. A. Tchelepi, and R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 13-16, 1591–1606. MR 2774768, DOI 10.1016/j.cma.2010.12.022
- Jeonghun J. Lee, Kent-Andre Mardal, and Ragnar Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput. 39 (2017), no. 1, A1–A24. MR 3590654, DOI 10.1137/15M1029473
- Ulla Miekkala, Dynamic iteration methods applied to linear DAE systems, J. Comput. Appl. Math. 25 (1989), no. 2, 133–151. MR 988054, DOI 10.1016/0377-0427(89)90044-7
- Axel Målqvist and Anna Persson, A generalized finite element method for linear thermoelasticity, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1145–1171. MR 3702408, DOI 10.1051/m2an/2016054
- Andro Mikelić and Mary F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. 17 (2013), no. 3, 455–461. MR 3050000, DOI 10.1007/s10596-012-9318-y
- Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case, Comput. Geosci. 11 (2007), no. 2, 131–144. MR 2327964, DOI 10.1007/s10596-007-9045-y
- Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case, Comput. Geosci. 11 (2007), no. 2, 145–158. MR 2327966, DOI 10.1007/s10596-007-9044-z
- Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci. 12 (2008), no. 4, 417–435. MR 2461315, DOI 10.1007/s10596-008-9082-1
- T. Roose, P. A. Netti, L. L. Munn, Y. Boucher, and R. K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res., 66(3):204–212, 2003.
- Erlend Storvik, Jakub W. Both, Kundan Kumar, Jan M. Nordbotten, and Florin A. Radu, On the optimization of the fixed-stress splitting for Biot’s equations, Internat. J. Numer. Methods Engrg. 120 (2019), no. 2, 179–194. MR 4007835, DOI 10.1002/nme.6130
- R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl. 251 (2000), no. 1, 310–340. MR 1790411, DOI 10.1006/jmaa.2000.7048
- Luc Tartar, An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, vol. 1, Springer-Verlag, Berlin; UMI, Bologna, 2006. MR 2258988, DOI 10.1007/3-540-36545-1
- S. Trenn and B. Unger, Delay regularity of differential-algebraic equations, Proc. 58th IEEE Conf. Decision Control (CDC) 2019, Nice, France, 989–994, 2019.
- B. Tully and Y. Ventikos, Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus, J. Fluid Mech. 667 (2011), 188–215. MR 2754490, DOI 10.1017/S0022112010004428
- Benjamin Unger, Discontinuity propagation in delay differential-algebraic equations, Electron. J. Linear Algebra 34 (2018), 582–601. MR 3890954, DOI 10.13001/1081-3810.3759
- J. C. Vardakis, D. Chou, B. J. Tully, C. C. Hung, T. H. Lee, P. H. Tsui, and Y. Ventikos, Investigating cerebral oedema using poroelasticity, Med. Eng. Phys., 38(1):48–57, 2016.
- Mary F. Wheeler and Xiuli Gai, Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Numer. Methods Partial Differential Equations 23 (2007), no. 4, 785–797. MR 2326193, DOI 10.1002/num.20258
- Eberhard Zeidler, Nonlinear functional analysis and its applications. II/A, Springer-Verlag, New York, 1990. Linear monotone operators; Translated from the German by the author and Leo F. Boron. MR 1033497, DOI 10.1007/978-1-4612-0985-0
- M. D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge, 2010.
Bibliographic Information
- R. Altmann
- Affiliation: Department of Mathematics, University of Augsburg, Universitätsstr. 14, 86159 Augsburg, Germany
- MR Author ID: 977251
- ORCID: 0000-0002-4161-6704
- Email: robert.altmann@math.uni-augsburg.de
- R. Maier
- Affiliation: Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Göteborg, Sweden
- MR Author ID: 1329180
- Email: roland.maier@chalmers.se
- B. Unger
- Affiliation: Institute of Mathematics MA 4-5, Technical University Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
- Address at time of publication: Stuttgart Center for Simulation Science (SC Sim Tech), University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
- MR Author ID: 1187453
- ORCID: 0000-0003-4272-1079
- Email: benjamin.unger@simtech.uni-stuttgart.de
- Received by editor(s): September 9, 2019
- Received by editor(s) in revised form: July 11, 2020
- Published electronically: March 3, 2021
- Additional Notes: The second author gratefully acknowledges support by the German Research Foundation (DFG) in the Priority Program 1748 Reliable simulation techniques in solid mechanics (PE2143/2-2). The work of the third author was supported by the German Research Foundation (DFG) Collaborative Research Center 910 Control of self-organizing nonlinear systems: Theoretical methods and concepts of application, project number 163436311.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 1089-1118
- MSC (2020): Primary 65M12, 65L80, 65M60, 76S05
- DOI: https://doi.org/10.1090/mcom/3608
- MathSciNet review: 4232218