Orientable hyperbolic 4-manifolds over the 120-cell
HTML articles powered by AMS MathViewer
- by Jiming Ma and Fangting Zheng;
- Math. Comp. 90 (2021), 2463-2501
- DOI: https://doi.org/10.1090/mcom/3625
- Published electronically: April 29, 2021
- HTML | PDF | Request permission
Abstract:
Since there is no hyperbolic Dehn filling theorem for higher dimensions, it is challenging to construct explicit hyperbolic manifolds of small volume in dimension at least four. Here, we build up closed hyperbolic 4-manifolds of volume $\frac {34\pi ^2}{3}\cdot 16$ by using the small cover theory. In particular, we classify all of the orientable four-dimensional small covers over the right-angled 120-cell up to homeomorphism; these are all with even intersection forms.References
- Michael T. Anderson, Dehn filling and Einstein metrics in higher dimensions, J. Differential Geom. 73 (2006), no. 2, 219–261. MR 2225518
- D. Baralić and L. Milenković, Surprising examples of manifolds in toric topology!, arXiv:1704.05932, 2017.
- Victor M. Buchstaber and Taras E. Panov, Toric topology, Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015. MR 3363157, DOI 10.1090/surv/204
- Li Cai, On products in a real moment-angle manifold, J. Math. Soc. Japan 69 (2017), no. 2, 503–528. MR 3638276, DOI 10.2969/jmsj/06920503
- L. Cai and S. Choi, Integral cohomology groups of real toric manifolds and small covers, arXiv:1604.06988, 2016.
- Suyoung Choi, The number of small covers over cubes, Algebr. Geom. Topol. 8 (2008), no. 4, 2391–2399. MR 2465745, DOI 10.2140/agt.2008.8.2391
- Suyoung Choi, Mikiya Masuda, and Sang-il Oum, Classification of real Bott manifolds and acyclic digraphs, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2987–3011. MR 3592535, DOI 10.1090/tran/6896
- Suyoung Choi and Hanchul Park, On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017), no. 3, 543–553. MR 3641664, DOI 10.1515/forum-2016-0025
- S. Choi and H. Park. Multiplication structure of the cohomology ring of real toric spaces. arXiv:1711.04983v1.
- Marston Conder and Peter Dobcsányi, Applications and adaptations of the low index subgroups procedure, Math. Comp. 74 (2005), no. 249, 485–497. MR 2085903, DOI 10.1090/S0025-5718-04-01647-3
- Marston Conder and Colin Maclachlan, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2469–2476. MR 2138890, DOI 10.1090/S0002-9939-05-07634-3
- H. S. M. Coxeter, Introduction to geometry, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 346644
- Michael W. Davis, A hyperbolic $4$-manifold, Proc. Amer. Math. Soc. 93 (1985), no. 2, 325–328. MR 770546, DOI 10.1090/S0002-9939-1985-0770546-7
- Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417–451. MR 1104531, DOI 10.1215/S0012-7094-91-06217-4
- Allan L. Edmonds, John H. Ewing, and Ravi S. Kulkarni, Torsion free subgroups of Fuchsian groups and tessellations of surfaces, Invent. Math. 69 (1982), no. 3, 331–346. MR 679761, DOI 10.1007/BF01389358
- Brent Everitt, John G. Ratcliffe, and Steven T. Tschantz, Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012), no. 3, 871–905. MR 2983072, DOI 10.1007/s00208-011-0744-2
- Xin Fu, Small covers over Löbell polytopes, Chinese Ann. Math. Ser. A 38 (2017), no. 2, 227–242 (Chinese, with English and Chinese summaries); English transl., Chinese J. Contemp. Math. 38 (2017), no. 2, 187–202. MR 3699858
- David Gabai, Robert Meyerhoff, and Peter Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), no. 4, 1157–1215. MR 2525782, DOI 10.1090/S0894-0347-09-00639-0
- David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math. (2) 157 (2003), no. 2, 335–431. MR 1973051, DOI 10.4007/annals.2003.157.335
- Anne Garrison and Richard Scott, Small covers of the dodecahedron and the 120-cell, Proc. Amer. Math. Soc. 131 (2003), no. 3, 963–971. MR 1937435, DOI 10.1090/S0002-9939-02-06577-2
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975) Lect. Notes Pure Appl. Math., Vol. 26, Dekker, New York-Basel, 1977, pp. 171–223. MR 441987
- I. Izmestiev. Three dimensional manifolds defined by coloring a simple polytope. Math. Notes, 69 (2001), 340–346.
- Matthieu Jacquemet and Steven T. Tschantz, All hyperbolic Coxeter $n$-cubes, J. Combin. Theory Ser. A 158 (2018), 387–406. MR 3800133, DOI 10.1016/j.jcta.2018.04.001
- Kerry N. Jones and Alan W. Reid, Minimal index torsion-free subgroups of Kleinian groups, Math. Ann. 310 (1998), no. 2, 235–250. MR 1602004, DOI 10.1007/s002080050147
- Benjamin Linowitz, Matthew Stover, and John Voight, Commensurability classes of fake quadrics, Selecta Math. (N.S.) 25 (2019), no. 3, Paper No. 48, 39. MR 3984106, DOI 10.1007/s00029-019-0492-9
- Deng Pin Liu, Cellular chain complex of small covers with integer coefficients and its application, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 11, 1742–1754. MR 3878811, DOI 10.1007/s10114-018-7160-4
- C. Long, Small volume closed hyperbolic 4-manifolds, Bull. Lond. Math. Soc. 40 (2008), no. 5, 913–916. MR 2439657, DOI 10.1112/blms/bdn077
- D. D. Long and A. W. Reid, On the geometric boundaries of hyperbolic $4$-manifolds, Geom. Topol. 4 (2000), 171–178. MR 1769269, DOI 10.2140/gt.2000.4.171
- Jiming Ma and Fangting Zheng, Torsions of 3-dimensional small covers, Chinese Ann. Math. Ser. B 38 (2017), no. 6, 1311–1320. MR 3721703, DOI 10.1007/s11401-007-1039-5
- J. Ma and F. Zheng, Geometrically bounding 3-manifold, volume and Betti number, To appear in Algebr. Geom. Topol. https://msp.org/soon/coming.php?jpath=agt
- T. H. Marshall and G. J. Martin, Minimal co-volume hyperbolic lattices, II: Simple torsion in a Kleinian group, Ann. of Math. (2) 176 (2012), no. 1, 261–301. MR 2925384, DOI 10.4007/annals.2012.176.1.4
- Bruno Martelli, Hyperbolic four-manifolds, Handbook of group actions. Vol. III, Adv. Lect. Math. (ALM), vol. 40, Int. Press, Somerville, MA, 2018, pp. 37–58. MR 3888615
- Bruno Martelli, Stefano Riolo, and Leone Slavich, Compact hyperbolic manifolds without spin structures, Geom. Topol. 24 (2020), no. 5, 2647–2674. MR 4194300, DOI 10.2140/gt.2020.24.2647
- Bruno Martelli and Stefano Riolo, Hyperbolic Dehn filling in dimension four, Geom. Topol. 22 (2018), no. 3, 1647–1716. MR 3780443, DOI 10.2140/gt.2018.22.1647
- Brendan D. McKay, Frédérique E. Oggier, Gordon F. Royle, N. J. A. Sloane, Ian M. Wanless, and Herbert S. Wilf, Acyclic digraphs and eigenvalues of $(0,1)$-matrices, J. Integer Seq. 7 (2004), no. 3, Article 04.3.3, 5. MR 2085343
- Hisashi Nakayama and Yasuzo Nishimura, The orientability of small covers and coloring simple polytopes, Osaka J. Math. 42 (2005), no. 1, 243–256. MR 2132014
- Steve Nugent and John Voight, On the arithmetic dimension of triangle groups, Math. Comp. 86 (2017), no. 306, 1979–2004. MR 3626545, DOI 10.1090/mcom/3147
- Leonid Potyagailo and Ernest Vinberg, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv. 80 (2005), no. 1, 63–73. MR 2130566, DOI 10.4171/CMH/4
- John G. Ratcliffe and Steven T. Tschantz, The volume spectrum of hyperbolic 4-manifolds, Experiment. Math. 9 (2000), no. 1, 101–125. MR 1758804, DOI 10.1080/10586458.2000.10504640
- John G. Ratcliffe and Steven T. Tschantz, On the Davis hyperbolic 4-manifold, Topology Appl. 111 (2001), no. 3, 327–342. MR 1814232, DOI 10.1016/S0166-8641(99)00221-7
- John G. Ratcliffe and Steven T. Tschantz, Integral congruence two hyperbolic 5-manifolds, Geom. Dedicata 107 (2004), 187–209. MR 2110762, DOI 10.1007/s10711-004-8120-y
- Robert W. Robinson, Enumeration of acyclic digraphs, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) University of North Carolina, Chapel Hill, NC, 1970, pp. 391–399. MR 276143
- Hemanth Saratchandran, Kirby diagrams and the Ratcliffe-Tschantz hyperbolic 4-manifolds, Topology Appl. 202 (2016), 301–317. MR 3464166, DOI 10.1016/j.topol.2016.01.024
- H. Saratchandran, A four dimensional hyperbolic link complement in a standard $S^4$, arXiv:1503.07778, 2015.
- H. Saratchandran, A four dimensional hyperbolic link complement in a standard $S^2\times S^2$, arXiv:1504.01366, 2015.
- H. Saratchandran, Complements of tori in $\#_{2k}S^2\times S^2$ that admit a hyperbolic structure, arXiv:1504.06703, 2015.
- Saul Schleimer and Henry Segerman, Puzzling the 120-cell, Notices Amer. Math. Soc. 62 (2015), no. 11, 1309–1316. MR 3443711, DOI 10.1090/noti1297
- Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171–178. MR 317988, DOI 10.1016/0012-365X(73)90108-8
- A. I. Suciu. The rational homology of real toric manifolds. arXiv:1302.2342v1(2013).
- A. I. Suciu and Alvise Trevisan. Real toric varieties and abelian covers of generalized Davis-Januszkiewicz spaces. Preprint, 2012.
- Alvise J. Trevisan, Generalized Davis-Januszkiewicz spaces, multicomplexes and monomial rings, Homology Homotopy Appl. 13 (2011), no. 1, 205–221. MR 2803872, DOI 10.4310/HHA.2011.v13.n1.a8
- A. Yu. Vesnin, Three-dimensional hyperbolic manifolds of Löbell type, Sibirsk. Mat. Zh. 28 (1987), no. 5, 50–53 (Russian). MR 924975
- A. Yu. Vesnin, Three-dimensional hyperbolic manifolds with a common fundamental polyhedron, Mat. Zametki 49 (1991), no. 6, 29–32, 157 (Russian); English transl., Math. Notes 49 (1991), no. 5-6, 575–577. MR 1135512, DOI 10.1007/BF01156579
- A. Yu. Vesnin, Right-angled polytopes and three-dimensional hyperbolic manifolds, Uspekhi Mat. Nauk 72 (2017), no. 2(434), 147–190 (Russian, with Russian summary); English transl., Russian Math. Surveys 72 (2017), no. 2, 335–374. MR 3635439, DOI 10.4213/rm9762
Bibliographic Information
- Jiming Ma
- Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
- Email: majiming@fudan.edu.cn
- Fangting Zheng
- Affiliation: Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, People’s Republic of China
- ORCID: 0000-0002-1143-861X
- Email: Fangting.Zheng@xjtlu.edu.cn
- Received by editor(s): March 26, 2020
- Received by editor(s) in revised form: September 19, 2020, November 28, 2020, and December 17, 2020
- Published electronically: April 29, 2021
- Additional Notes: The first author was partially supported by NSFC 11371094 and 11771088. The second author was supported by XJTLU Research Development Fund RDF-19-01-29
The second author is the corresponding author - © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2463-2501
- MSC (2020): Primary 32Q45, 52B70
- DOI: https://doi.org/10.1090/mcom/3625
- MathSciNet review: 4280307