Algorithms for fusion systems with applications to $p$-groups of small order
HTML articles powered by AMS MathViewer
- by Chris Parker and Jason Semeraro;
- Math. Comp. 90 (2021), 2415-2461
- DOI: https://doi.org/10.1090/mcom/3634
- Published electronically: April 23, 2021
- HTML | PDF | Request permission
Abstract:
For a prime $p$, we describe a protocol for handling a specific type of fusion system on a $p$-group by computer. These fusion systems contain all saturated fusion systems. This framework allows us to computationally determine whether or not two subgroups are conjugate in the fusion system for example. We describe a generation procedure for automizers of every subgroup of the $p$-group. This allows a computational check of saturation. These procedures have been implemented using Magma. We describe a computer program which searches for saturated fusion systems $\mathcal {F}$ on $p$-groups with $O_p(\mathcal {F})=1$ and $O^p(\mathcal {F})=\mathcal {F}$. Employing these computational methods we determine all such fusion systems on groups of order $p^n$ where $(p,n) \in \{(3,4),(3,5),(3,6),(3,7),(5,4),(5,5),(5,6),(7,4),(7,5)\}$. This gives the first complete picture of which groups can support saturated fusion systems with $O_p(\mathcal {F})=1$ and $O^p(\mathcal {F})=\mathcal {F}$ on small $p$-groups of odd order.References
- Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834, DOI 10.1017/CBO9781139003841
- Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Fusion systems and amalgams, Math. Z. 274 (2013), no.Β 3-4, 1119β1154. MR 3078260, DOI 10.1007/s00209-012-1109-6
- Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Reduced fusion systems over 2-groups of small order, J. Algebra 489 (2017), 310β372. MR 3686981, DOI 10.1016/j.jalgebra.2017.06.016
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no.Β 3-4, 235β265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Elisa Baccanelli, Clara Franchi, and Mario Mainardis, Fusion systems on a Sylow 3-subgroup of the McLaughlin group, J. Group Theory 22 (2019), no.Β 4, 689β711. MR 3975687, DOI 10.1515/jgth-2019-2045
- N. Blackburn, On a special class of $p$-groups, Acta Math. 100 (1958), 45β92. MR 102558, DOI 10.1007/BF02559602
- Carles Broto, Ran Levi, and Bob Oliver, A geometric construction of saturated fusion systems, An alpine anthology of homotopy theory, Contemp. Math., vol. 399, Amer. Math. Soc., Providence, RI, 2006, pp.Β 11β40. MR 2222502, DOI 10.1090/conm/399/07510
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- M. R. Clelland, Saturated fusion systems and finite groups, Ph.D. thesis, University of Birmingham, 2007.
- David A. Craven, Bob Oliver, and Jason Semeraro, Reduced fusion systems over $p$-groups with abelian subgroup of index $p$: II, Adv. Math. 322 (2017), 201β268. MR 3720798, DOI 10.1016/j.aim.2017.10.001
- Murray Clelland and Christopher Parker, Two families of exotic fusion systems, J. Algebra 323 (2010), no.Β 2, 287β304. MR 2564839, DOI 10.1016/j.jalgebra.2009.07.023
- David A. Craven, The theory of fusion systems, Cambridge Studies in Advanced Mathematics, vol. 131, Cambridge University Press, Cambridge, 2011. An algebraic approach. MR 2808319, DOI 10.1017/CBO9780511794506
- Heiko Dietrich and Bettina Eick, Finite $p$-groups of maximal class with βlargeβ automorphism groups, J. Group Theory 20 (2017), no.Β 2, 227β256. MR 3619127, DOI 10.1515/jgth-2016-0036
- Antonio DΓaz, Adam Glesser, Nadia Mazza, and Sejong Park, Control of transfer and weak closure in fusion systems, J. Algebra 323 (2010), no.Β 2, 382β392. MR 2564845, DOI 10.1016/j.jalgebra.2009.09.028
- Antonio DΓaz, Albert Ruiz, and Antonio Viruel, All $p$-local finite groups of rank two for odd prime $p$, Trans. Amer. Math. Soc. 359 (2007), no.Β 4, 1725β1764. MR 2272147, DOI 10.1090/S0002-9947-06-04367-4
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 2. Part I. Chapter G, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1996. General group theory. MR 1358135, DOI 10.1090/surv/040.2
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- β, The classification of the finite simple groups. Number 4. Part II. Chapters 1β4, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1999, Uniqueness Theorems.
- Daniel Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980. MR 569209
- V. Grazian and C. Parker, Saturated fusion systems on $p$-groups of maximal class, arXiv:2011.05011, 2020.
- Valentina Grazian, Fusion systems containing pearls, J. Algebra 510 (2018), 98β140. MR 3828781, DOI 10.1016/j.jalgebra.2018.05.029
- Valentina Grazian, Fusion systems on $p$-groups of sectional rank 3, J. Algebra 537 (2019), 39β78. MR 3990037, DOI 10.1016/j.jalgebra.2019.06.036
- E. Henke and S. Shpectorov, Fusion systems over Sylow $p$-subgroups of $PSp_4(p^a)$, Unpublished manuscript.
- R. M. Moncho, Fusion systems on p-groups with an extraspecial subgroup of index p, Ph.D. thesis, University of Birmingham,. 2018.
- Bob Oliver, Splitting fusion systems over 2-groups, Proc. Edinb. Math. Soc. (2) 56 (2013), no.Β 1, 263β301. MR 3021413, DOI 10.1017/S0013091512000120
- Bob Oliver, Simple fusion systems over $p$-groups with abelian subgroup of index $p$: I, J. Algebra 398 (2014), 527β541. MR 3123784, DOI 10.1016/j.jalgebra.2013.09.012
- Silvia Onofrei, Saturated fusion systems with parabolic families, J. Algebra 348 (2011), 61β84. MR 2852232, DOI 10.1016/j.jalgebra.2011.09.028
- Bob Oliver and Albert Ruiz, Reduced fusion systems over $p$-groups with abelian subgroup of index $p$: III, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no.Β 3, 1187β1239. MR 4091058, DOI 10.1017/prm.2018.107
- Bob Oliver and Joana Ventura, Saturated fusion systems over 2-groups, Trans. Amer. Math. Soc. 361 (2009), no.Β 12, 6661β6728. MR 2538610, DOI 10.1090/S0002-9947-09-04881-8
- Sejong Park, Realizing fusion systems inside finite groups, Proc. Amer. Math. Soc. 144 (2016), no.Β 8, 3291β3294. MR 3503697, DOI 10.1090/proc/13077
- C. Parker, G. Pientka, A. Seidel, and G. Stroth, Finite groups which are almost groups of Lie type in characteristic $p$, To appear in Mem. Amer. Math. Soc.
- Chris Parker and Gernot Stroth, A family of fusion systems related to the groups $\textrm {Sp}_4(p^a)$ and $\textrm {G}_2(p^a)$, Arch. Math. (Basel) 104 (2015), no.Β 4, 311β323. MR 3325764, DOI 10.1007/s00013-015-0751-8
- Chris Parker and Jason Semeraro, Fusion systems over a Sylow $p$-subgroup of $\textrm {G}_2(p)$, Math. Z. 289 (2018), no.Β 1-2, 629β662. MR 3803806, DOI 10.1007/s00209-017-1969-x
- Chris Parker and Jason Semeraro, Fusion systems on maximal class 3-groups of rank two revisited, Proc. Amer. Math. Soc. 147 (2019), no.Β 9, 3773β3786. MR 3993770, DOI 10.1090/proc/14552
- C. Parker and J. Semeraro, Fusion systems, https://github.com/chris1961parker/fusion-systems, 2020.
- Albert Ruiz and Antonio Viruel, The classification of $p$-local finite groups over the extraspecial group of order $p^3$ and exponent $p$, Math. Z. 248 (2004), no.Β 1, 45β65. MR 2092721, DOI 10.1007/s00209-004-0652-1
- M. van Beek, Local group theory, the amalgam method, and fusion systems, Ph.D. thesis, University of Birmingham, Expected 2021.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no.Β 1, 265β284 (German). MR 1546236, DOI 10.1007/BF01692444
Bibliographic Information
- Chris Parker
- Affiliation: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- MR Author ID: 315689
- Email: c.w.parker@bham.ac.uk
- Jason Semeraro
- Affiliation: Heilbronn Institute for Mathematical Research, School of Mathematics, University of Leicester, United Kingdom
- MR Author ID: 1048702
- ORCID: 0000-0003-0867-6278
- Email: jpgs1@leicester.ac.uk
- Received by editor(s): April 7, 2020
- Received by editor(s) in revised form: September 29, 2020, December 3, 2020, and January 11, 2021
- Published electronically: April 23, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2415-2461
- MSC (2020): Primary 20D20, 20D05
- DOI: https://doi.org/10.1090/mcom/3634
- MathSciNet review: 4280306