A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system
HTML articles powered by AMS MathViewer
- by Chun Liu, Cheng Wang, Steven M. Wise, Xingye Yue and Shenggao Zhou;
- Math. Comp. 90 (2021), 2071-2106
- DOI: https://doi.org/10.1090/mcom/3642
- Published electronically: June 15, 2021
- HTML | PDF | Request permission
Abstract:
In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility $H^{-1}$ gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, $n$ and $p$, is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of $0$ prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the $\ell ^\infty$ bound for $n$ and $p$), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.References
- A. Baskaran, J. S. Lowengrub, C. Wang, and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 51 (2013), no. 5, 2851–2873. MR 3118257, DOI 10.1137/120880677
- M.Z. Bazant, K. Thornton, and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E 70 (2004), no. 2, 021506., DOI 10.1103/PhysRevE.70.021506
- Y. Ben and H.-C. Chang, Nonlinear Smoluchowski slip velocity and micro-vortex generation, J. Fluid Mech. 461 (2002), 229–238. MR 1918664, DOI 10.1017/S0022112002008662
- Wenbin Chen, Cheng Wang, Xiaoming Wang, and Steven M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X 3 (2019), 100031, 29. MR 4116082, DOI 10.1016/j.jcpx.2019.100031
- Laurence Cherfils, Alain Miranville, and Sergey Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math. 79 (2011), no. 2, 561–596. MR 2862028, DOI 10.1007/s00032-011-0165-4
- Jie Ding, Cheng Wang, and Shenggao Zhou, Optimal rate convergence analysis of a second order numerical scheme for the Poisson-Nernst-Planck system, Numer. Math. Theory Methods Appl. 12 (2019), no. 2, 607–626. MR 3894846, DOI 10.4208/nmtma.oa-2018-0058
- Jie Ding, Zhongming Wang, and Shenggao Zhou, Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interactions: application to slit-shaped nanopore conductance, J. Comput. Phys. 397 (2019), 108864, 18. MR 3995243, DOI 10.1016/j.jcp.2019.108864
- Jie Ding, Zhongming Wang, and Shenggao Zhou, Structure-preserving and efficient numerical methods for ion transport, J. Comput. Phys. 418 (2020), 109597, 21. MR 4109375, DOI 10.1016/j.jcp.2020.109597
- Lixiu Dong, Cheng Wang, Hui Zhang, and Zhengru Zhang, A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy, Commun. Math. Sci. 17 (2019), no. 4, 921–939. MR 4030506, DOI 10.4310/CMS.2019.v17.n4.a3
- Lixiu Dong, Cheng Wang, Hui Zhang, and Zhengru Zhang, A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters, Commun. Comput. Phys. 28 (2020), no. 3, 967–998. MR 4126520, DOI 10.4208/cicp.oa-2019-0037
- Chenghua Duan, Chun Liu, Cheng Wang, and Xingye Yue, Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach, Numer. Math. Theory Methods Appl. 13 (2020), no. 1, 63–80. MR 4044415, DOI 10.4208/nmtma.oa-2019-0073
- Weinan E and Jian-Guo Liu, Projection method. I. Convergence and numerical boundary layers, SIAM J. Numer. Anal. 32 (1995), no. 4, 1017–1057. MR 1342281, DOI 10.1137/0732047
- Weinan E and Jian-Guo Liu, Projection method. III. Spatial discretization on the staggered grid, Math. Comp. 71 (2002), no. 237, 27–47. MR 1862987, DOI 10.1090/S0025-5718-01-01313-8
- B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys. 133 (2010), no. 10, 104104., DOI 10.1063/1.3476262
- R.S. Eisenberg, Computing the field in proteins and channels, J. Mem. Biol. 150 (1996), 1–25., DOI 10.1007/s002329900026
- A. Flavell, J. Kabre, and X. Li, An energy-preserving discretization for the Poisson-Nernst-Planck equations, J. Comput. Electron 16 (2017), 431–441., DOI 10.1007/s10825-017-0969-8
- A. Flavell, M. Machen, R. Eisenberg, J. Kabre, C. Liu, and X. Li, A conservative finite difference scheme for Poisson-Nernst-Planck equations, J. Comput. Electron. 13 (2014), 235–249., DOI 10.1007/s10825-013-0506-3
- H. Gao and D. He, Linearized conservative finite element methods for the Nernst–Planck–Poisson equations, J. Sci. Comput. 72 (2017), 1269–1289., DOI 10.1007/s10915-017-0400-4
- N. Gavish and A. Yochelis, Theory of phase separation and polarization for pure ionic liquids, J. Phys. Chem. Lett. 7 (2016), 1121–1126., DOI 10.1021/acs.jpclett.6b00370
- Andrea Giorgini, Maurizio Grasselli, and Alain Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci. 27 (2017), no. 13, 2485–2510. MR 3714635, DOI 10.1142/S0218202517500506
- Zhen Guan, John Lowengrub, and Cheng Wang, Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations, Math. Methods Appl. Sci. 40 (2017), no. 18, 6836–6863. MR 3742100, DOI 10.1002/mma.4497
- Zhen Guan, Cheng Wang, and Steven M. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math. 128 (2014), no. 2, 377–406. MR 3259494, DOI 10.1007/s00211-014-0608-2
- Jing Guo, Cheng Wang, Steven M. Wise, and Xingye Yue, An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation, Commun. Math. Sci. 14 (2016), no. 2, 489–515. MR 3436249, DOI 10.4310/CMS.2016.v14.n2.a8
- Dongdong He and Kejia Pan, An energy preserving finite difference scheme for the Poisson-Nernst-Planck system, Appl. Math. Comput. 287/288 (2016), 214–223. MR 3506521, DOI 10.1016/j.amc.2016.05.007
- Dongdong He, Kejia Pan, and Xiaoqiang Yue, A positivity preserving and free energy dissipative difference scheme for the Poisson-Nernst-Planck system, J. Sci. Comput. 81 (2019), no. 1, 436–458. MR 4002752, DOI 10.1007/s10915-019-01025-x
- Jingwei Hu and Xiaodong Huang, A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations, Numer. Math. 145 (2020), no. 1, 77–115. MR 4091595, DOI 10.1007/s00211-020-01109-z
- R.J. Hunter, Foundations of colloid science, Oxford University Press, Oxford, UK, 2001.
- Joseph W. Jerome, Analysis of charge transport, Springer-Verlag, Berlin, 1996. A mathematical study of semiconductor devices. MR 1437143, DOI 10.1007/978-3-642-79987-7
- Xiao Li, Zhonghua Qiao, and Cheng Wang, Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation, Math. Comp. 90 (2021), no. 327, 171–188. MR 4166457, DOI 10.1090/mcom/3578
- Hailiang Liu and Wumaier Maimaitiyiming, Efficient, positive, and energy stable schemes for multi-D Poisson-Nernst-Planck systems, J. Sci. Comput. 87 (2021), no. 3, Paper No. 92, 36. MR 4254717, DOI 10.1007/s10915-021-01503-1
- Hailiang Liu and Wumaier Maimaitiyiming, Unconditional positivity-preserving and energy stable schemes for a reduced Poisson-Nernst-Planck system, Commun. Comput. Phys. 27 (2020), no. 5, 1505–1529. MR 4090325, DOI 10.4208/cicp.oa-2019-0063
- Hailiang Liu and Zhongming Wang, A free energy satisfying finite difference method for Poisson-Nernst-Planck equations, J. Comput. Phys. 268 (2014), 363–376. MR 3192448, DOI 10.1016/j.jcp.2014.02.036
- Hailiang Liu and Zhongming Wang, A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems, J. Comput. Phys. 328 (2017), 413–437. MR 3571893, DOI 10.1016/j.jcp.2016.10.008
- J. Lyklema, Fundamentals of interface and colloid science. Volume ii: Solid-liquid interfaces, Academic Press Limited, San Diego, CA, 1995.
- Peter A. Markowich, The stationary semiconductor device equations, Computational Microelectronics, Springer-Verlag, Vienna, 1986. MR 821965, DOI 10.1007/978-3-7091-3678-2
- P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna, 1990. MR 1063852, DOI 10.1007/978-3-7091-6961-2
- Maximilian S. Metti, Jinchao Xu, and Chun Liu, Energetically stable discretizations for charge transport and electrokinetic models, J. Comput. Phys. 306 (2016), 1–18. MR 3432338, DOI 10.1016/j.jcp.2015.10.053
- Alain Miranville, On a phase-field model with a logarithmic nonlinearity, Appl. Math. 57 (2012), no. 3, 215–229. MR 2984601, DOI 10.1007/s10492-012-0014-y
- Mohammad Mirzadeh and Frédéric Gibou, A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids, J. Comput. Phys. 274 (2014), 633–653. MR 3231786, DOI 10.1016/j.jcp.2014.06.039
- I. Nazarov and K. Promislow, The impact of membrane constraint on PEM fuel cell water management, J. Electrochem. Soc. 154 (2007), no. 7, 623–630., DOI 10.1149/1.2731248
- W. Nonner, D.P. Chen, and B. Eisenberg, Progress and prospects in permeation, J. Gen. Physiol. 113 (1999), 773–782., DOI 10.1085/jgp.113.6.773
- Andreas Prohl and Markus Schmuck, Convergent discretizations for the Nernst-Planck-Poisson system, Numer. Math. 111 (2009), no. 4, 591–630. MR 2471611, DOI 10.1007/s00211-008-0194-2
- Keith Promislow and John M. Stockie, Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode, SIAM J. Appl. Math. 62 (2001), no. 1, 180–205. MR 1857541, DOI 10.1137/S0036139999362488
- Yiran Qian, Cheng Wang, and Shenggao Zhou, A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions, J. Comput. Phys. 426 (2021), Paper No. 109908, 17. MR 4195851, DOI 10.1016/j.jcp.2020.109908
- Roger Samelson, Roger Temam, Cheng Wang, and Shouhong Wang, Surface pressure Poisson equation formulation of the primitive equations: numerical schemes, SIAM J. Numer. Anal. 41 (2003), no. 3, 1163–1194. MR 2005199, DOI 10.1137/S0036142901396284
- Roger Samelson, Roger Temam, Cheng Wang, and Shouhong Wang, A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance, Numer. Math. 107 (2007), no. 4, 669–705. MR 2342648, DOI 10.1007/s00211-007-0104-z
- Farjana Siddiqua, Zhongming Wang, and Shenggao Zhou, A modified Poisson-Nernst-Planck model with excluded volume effect: theory and numerical implementation, Commun. Math. Sci. 16 (2018), no. 1, 251–271. MR 3787212, DOI 10.4310/CMS.2018.v16.n1.a12
- Yuzhou Sun, Pengtao Sun, Bin Zheng, and Guang Lin, Error analysis of finite element method for Poisson-Nernst-Planck equations, J. Comput. Appl. Math. 301 (2016), 28–43. MR 3464989, DOI 10.1016/j.cam.2016.01.028
- B. Tu, M. Chen, Y. Xie, L. Zhang, B. Eisenberg, and B. Lu, A parallel finite element simulator for ion transport through three-dimensional ion channel systems, J. Comput. Chem. 287 (2015), 214–223.
- Cheng Wang and Jian-Guo Liu, Convergence of gauge method for incompressible flow, Math. Comp. 69 (2000), no. 232, 1385–1407. MR 1710695, DOI 10.1090/S0025-5718-00-01248-5
- Cheng Wang and Jian-Guo Liu, Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation, Numer. Math. 91 (2002), no. 3, 543–576. MR 1907870, DOI 10.1007/s002110100311
- Cheng Wang, Jian-Guo Liu, and Hans Johnston, Analysis of a fourth order finite difference method for the incompressible Boussinesq equations, Numer. Math. 97 (2004), no. 3, 555–594. MR 2059469, DOI 10.1007/s00211-003-0508-3
- C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 49 (2011), no. 3, 945–969. MR 2802554, DOI 10.1137/090752675
- Lingdi Wang, Wenbin Chen, and Cheng Wang, An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term, J. Comput. Appl. Math. 280 (2015), 347–366. MR 3296065, DOI 10.1016/j.cam.2014.11.043
- S. M. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput. 44 (2010), no. 1, 38–68. MR 2647498, DOI 10.1007/s10915-010-9363-4
- S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47 (2009), no. 3, 2269–2288. MR 2519603, DOI 10.1137/080738143
- S. Xu, M. Chen, S. Majd, X. Yue, and C. Liu, Modeling and simulating asymmetrical conductance changes in gramicidin pores, Mol. Based Math. Biol. 2 (2014), 34–55.
Bibliographic Information
- Chun Liu
- Affiliation: Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616
- MR Author ID: 362496
- Email: cliu124@iit.edu
- Cheng Wang
- Affiliation: Department of Mathematics, University of Massachusetts, North Dartmouth, Massachusetts 02747
- MR Author ID: 652762
- Email: cwang1@umassd.edu
- Steven M. Wise
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 615795
- ORCID: 0000-0003-3824-2075
- Email: swise1@utk.edu
- Xingye Yue
- Affiliation: Department of Mathematics, Soochow University, Suzhou 215006, People’s Republic of China
- Email: xyyue@suda.edu.cn
- Shenggao Zhou
- Affiliation: School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
- ORCID: 0000-0001-9097-8392
- Email: sgzhou@sjtu.edu.cn
- Received by editor(s): September 11, 2020
- Received by editor(s) in revised form: December 27, 2020
- Published electronically: June 15, 2021
- Additional Notes: This work was supported in part by the National Science Foundation (USA) grants NSF DMS-1759535, NSF DMS-1759536 (first author), NSF DMS-2012669 (second author), NSF DMS-1719854, DMS-2012634 (third author), National Natural Science Foundation of China 11971342 (fourth author), NSFC 21773165, Natural Science Foundation of Jiangsu Province (BK20200098), China, Young Elite Scientist Sponsorship Program by Jiangsu Association for Science and Technology, and National Key R&D Program of China 2018YFB0204404 (fifth author).
The fifth author is the corresponding author - © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2071-2106
- MSC (2020): Primary 35K35, 35K55, 49J40, 65M06, 65M12
- DOI: https://doi.org/10.1090/mcom/3642
- MathSciNet review: 4280293