A weighted randomized Kaczmarz method for solving linear systems
HTML articles powered by AMS MathViewer
- by Stefan Steinerberger;
- Math. Comp. 90 (2021), 2815-2826
- DOI: https://doi.org/10.1090/mcom/3644
- Published electronically: June 1, 2021
- HTML | PDF | Request permission
Abstract:
The Kaczmarz method for solving a linear system $Ax = b$ interprets such a system as a collection of equations $\left \langle a_i, x\right \rangle = b_i$, where $a_i$ is the $i$-th row of $A$. It then picks such an equation and corrects $x_{k+1} = x_k + \lambda a_i$ where $\lambda$ is chosen so that the $i$-th equation is satisfied. Convergence rates are difficult to establish. Strohmer & Vershynin established that if the order of equations is chosen randomly (with likelihood proportional to the size of $\|a_i\|^2_{\ell ^2}$), then $\mathbb {E}~ \|x_k - x\|_{\ell ^2}$ converges exponentially. We prove that if the $i$-th row is selected with likelihood proportional to $\left |\left \langle a_i, x_k \right \rangle - b_i\right |^{p}$, where $0<p<\infty$, then $\mathbb {E}~\|x_k - x\|_{\ell ^2}$ converges faster than the purely random method. As $p \rightarrow \infty$, the method de-randomizes and explains, among other things, why the maximal correction method works well.References
- Shmuel Agmon, The relaxation method for linear inequalities, Canad. J. Math. 6 (1954), 382–392. MR 62786, DOI 10.4153/cjm-1954-037-2
- Zhong-Zhi Bai and Wen-Ting Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra Appl. 553 (2018), 252–269. MR 3809379, DOI 10.1016/j.laa.2018.05.009
- Zhong-Zhi Bai and Wen-Ting Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput. 40 (2018), no. 1, A592–A606. MR 3765917, DOI 10.1137/17M1137747
- Zhong-Zhi Bai and Wen-Ting Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl. Math. Lett. 83 (2018), 21–26. MR 3795665, DOI 10.1016/j.aml.2018.03.008
- C. Cenker, H. G. Feichtinger, M. Mayer, H. Steier, and T. Strohmer, New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In Proc. SPIE: Visual Communications and Image Processing, 1992, pp. 299–310.
- Frank Deutsch, Rate of convergence of the method of alternating projections, Parametric optimization and approximation (Oberwolfach, 1983) Internat. Schriftenreihe Numer. Math., vol. 72, Birkhäuser, Basel, 1985, pp. 96–107. MR 882199
- Frank Deutsch and Hein Hundal, The rate of convergence for the method of alternating projections. II, J. Math. Anal. Appl. 205 (1997), no. 2, 381–405. MR 1428355, DOI 10.1006/jmaa.1997.5202
- Kui Du and Han Gao, A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm, Numer. Math. Theory Methods Appl. 12 (2019), no. 2, 627–639. MR 3894847, DOI 10.4208/nmtma.oa-2018-0039
- Yonina C. Eldar and Deanna Needell, Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss lemma, Numer. Algorithms 58 (2011), no. 2, 163–177. MR 2835851, DOI 10.1007/s11075-011-9451-z
- Tommy Elfving, Per Christian Hansen, and Touraj Nikazad, Semi-convergence properties of Kaczmarz’s method, Inverse Problems 30 (2014), no. 5, 055007, 16. MR 3207149, DOI 10.1088/0266-5611/30/5/055007
- A. Galántai, On the rate of convergence of the alternating projection method in finite dimensional spaces, J. Math. Anal. Appl. 310 (2005), no. 1, 30–44. MR 2160671, DOI 10.1016/j.jmaa.2004.12.050
- Dan Gordon, A derandomization approach to recovering bandlimited signals across a wide range of random sampling rates, Numer. Algorithms 77 (2018), no. 4, 1141–1157. MR 3779081, DOI 10.1007/s11075-017-0356-3
- R. Gordon, R. Bender and G. Herman, Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and x-ray photography, J. of Theoret. Bio., 29 (1970), 471–481.
- R. M. Gower, D. Molitor, J. Moorman and D. Needell, Adaptive sketch-and-project methods for solving linear systems, arXiv:1909.03604, 2019.
- Robert M. Gower and Peter Richtárik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4, 1660–1690. MR 3432148, DOI 10.1137/15M1025487
- Jamie Haddock and Anna Ma, Greed works: an improved analysis of sampling Kaczmarz-Motzkin, SIAM J. Math. Data Sci. 3 (2021), no. 1, 342–368. MR 4222189, DOI 10.1137/19M1307044
- Jamie Haddock and Deanna Needell, On Motzkin’s method for inconsistent linear systems, BIT 59 (2019), no. 2, 387–401. MR 3974045, DOI 10.1007/s10543-018-0737-6
- Gabor T. Herman, Image reconstruction from projections, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. The fundamentals of computerized tomography. MR 630896
- G. T. Herman and L. B. Meyer, Algebraic reconstruction techniques can be made computationally efficient, IEEE Trans. Medical Imaging, 12 (1993), 600–609.
- Y. Jiang, G. Wu, and L. Jiang, A Kaczmarz method with simple random sampling for solving large linear systems, arXiv:2011.14693, 2020.
- S. Kaczmarz, Angenaherte Auflosung von Systemen linearer Gleichungen, Bulletin International de l’Academie Polonaise des Sciences et des Lettres. Classe des Sciences Mathematiques et Naturelles. Serie A, Sciences Mathematiques 35 (1937), 355–357.
- Yin Tat Lee and Aaron Sidford, Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science—FOCS 2013, IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 147–156. MR 3246216, DOI 10.1109/FOCS.2013.24
- D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning, Math. Oper. Res. 35 (2010), no. 3, 641–654. MR 2724068, DOI 10.1287/moor.1100.0456
- Yingzhou Li, Jianfeng Lu, and Zhe Wang, Coordinatewise descent methods for leading eigenvalue problem, SIAM J. Sci. Comput. 41 (2019), no. 4, A2681–A2716. MR 3995306, DOI 10.1137/18M1202505
- H. Li and Y. Zhang, A novel greedy Kaczmarz method for solving consistent linear systems, arXiv:2004.02062, 2020.
- Ji Liu and Stephen J. Wright, An accelerated randomized Kaczmarz algorithm, Math. Comp. 85 (2016), no. 297, 153–178. MR 3404446, DOI 10.1090/mcom/2971
- Anna Ma, Deanna Needell, and Aaditya Ramdas, Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4, 1590–1604. MR 3422440, DOI 10.1137/15M1014425
- J. Moorman, T. Tu, D. Molitor, and D. Needell, Randomized Kaczmarz with averaging, arXiv:2002.04126, 2020.
- F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 856916
- Deanna Needell, Randomized Kaczmarz solver for noisy linear systems, BIT 50 (2010), no. 2, 395–403. MR 2640019, DOI 10.1007/s10543-010-0265-5
- Deanna Needell and Joel A. Tropp, Paved with good intentions: analysis of a randomized block Kaczmarz method, Linear Algebra Appl. 441 (2014), 199–221. MR 3134343, DOI 10.1016/j.laa.2012.12.022
- Deanna Needell and Rachel Ward, Two-subspace projection method for coherent overdetermined systems, J. Fourier Anal. Appl. 19 (2013), no. 2, 256–269. MR 3034763, DOI 10.1007/s00041-012-9248-z
- Deanna Needell, Nathan Srebro, and Rachel Ward, Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm, Math. Program. 155 (2016), no. 1-2, Ser. A, 549–573. MR 3439812, DOI 10.1007/s10107-015-0864-7
- Deanna Needell, Ran Zhao, and Anastasios Zouzias, Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl. 484 (2015), 322–343. MR 3385065, DOI 10.1016/j.laa.2015.06.027
- J. Nutini, B. Sepehry, I. Laradji, M. Schmidt, H. Koepke, A. Virani, Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using the Orthogonality Graph, The 32th Conference on Uncertainty in Artificial Intelligence, 2016.
- Elena Loli Piccolomini and Fabiana Zama, The conjugate gradient regularization method in computed tomography problems, Appl. Math. Comput. 102 (1999), no. 1, 87–99. MR 1682856, DOI 10.1016/S0096-3003(98)10007-3
- Constantin Popa, Convergence rates for Kaczmarz-type algorithms, Numer. Algorithms 79 (2018), no. 1, 1–17. MR 3846956, DOI 10.1007/s11075-017-0425-7
- Henry Stark (ed.), Image recovery: theory and application, Academic Press, Inc., Orlando, FL, 1987. MR 896707
- S. Steinerberger, Randomized Kaczmarz converges along small singular vectors, arXiv:2006.16978, 2020.
- Thomas Strohmer and Roman Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl. 15 (2009), no. 2, 262–278. MR 2500924, DOI 10.1007/s00041-008-9030-4
- Yan Shuo Tan and Roman Vershynin, Phase retrieval via randomized Kaczmarz: theoretical guarantees, Inf. Inference 8 (2019), no. 1, 97–123. MR 3922404, DOI 10.1093/imaiai/iay005
- Jian-Jun Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems, Appl. Math. Lett. 91 (2019), 207–212. MR 3896982, DOI 10.1016/j.aml.2018.12.022
- Anastasios Zouzias and Nikolaos M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 773–793. MR 3069089, DOI 10.1137/120889897
Bibliographic Information
- Stefan Steinerberger
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 869041
- ORCID: 0000-0002-7745-4217
- Email: steinerb@uw.edu
- Received by editor(s): September 30, 2020
- Received by editor(s) in revised form: February 1, 2021
- Published electronically: June 1, 2021
- Additional Notes: The author was supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2815-2826
- MSC (2020): Primary 52C35, 65F10
- DOI: https://doi.org/10.1090/mcom/3644
- MathSciNet review: 4305370