A fast algorithm to compute the Ramanujan-Deninger gamma function and some number-theoretic applications
HTML articles powered by AMS MathViewer
- by Alessandro Languasco and Luca Righi;
- Math. Comp. 90 (2021), 2899-2921
- DOI: https://doi.org/10.1090/mcom/3668
- Published electronically: August 12, 2021
- HTML | PDF | Request permission
Abstract:
We introduce a fast algorithm to compute the Ramanujan-Deninger gamma function and its logarithmic derivative at positive values. Such an algorithm allows us to greatly extend the numerical investigations about the Euler-Kronecker constants $\mathfrak {G}_q$, $\mathfrak {G}_q^+$ and $M_q=\max _{\chi \ne \chi _0} \vert L^\prime /L(1,\chi )\vert$, where $q$ is an odd prime, $\chi$ runs over the primitive Dirichlet characters $\bmod \ q$, $\chi _0$ is the principal Dirichlet character $\bmod \ q$ and $L(s,\chi )$ is the Dirichlet $L$-function associated to $\chi$. Using such algorithms we obtained that $\mathfrak {G}_{50 040 955 631} =-0.16595399\dotsc$ and $\mathfrak {G}_{50 040 955 631}^+ =13.89764738\dotsc$ thus getting a new negative value for $\mathfrak {G}_q$.
Moreover we also computed $\mathfrak {G}_q$, $\mathfrak {G}_q^+$ and $M_q$ for every prime $q$, $10^6< q\le {10^{7}}$, thus extending the results by Languasco [Res. Number Theory 7 (2021), no. 1, Paper No. 2]. As a consequence we obtain that both $\mathfrak {G}_q$ and $\mathfrak {G}_q^+$ are positive for every odd prime $q$ up to ${10^{7}}$ and that $\frac {17}{20} \log \log q< M_q < \frac {5}{4} \log \log q$ for every prime $1531 < q\le {10^{7}}$. In fact the lower bound holds true for $q>13$. The programs used and the results here described are collected at the following address http://www.math.unipd.it/ languasc/Scomp-appl.html.
References
- Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125, DOI 10.1007/978-1-4612-1088-7
- Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007. MR 2312338
- Christopher Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 171–191. MR 749681, DOI 10.1515/crll.1984.351.171
- Karl Dilcher, Generalized Euler constants for arithmetical progressions, Math. Comp. 59 (1992), no. 199, 259–282, S21–S24. MR 1134726, DOI 10.1090/S0025-5718-1992-1134726-5
- Karl Dilcher, On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function, Aequationes Math. 48 (1994), no. 1, 55–85. MR 1277891, DOI 10.1007/BF01837979
- Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler $\phi$-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), no. 287, 1447–1476. MR 3167466, DOI 10.1090/S0025-5718-2013-02749-4
- M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93 (2005), 216–231. The C library is available at http://www.fftw.org.
- Louis Gordon, A stochastic approach to the gamma function, Amer. Math. Monthly 101 (1994), no. 9, 858–865. MR 1300491, DOI 10.2307/2975134
- Nicholas J. Higham, The accuracy of floating point summation, SIAM J. Sci. Comput. 14 (1993), no. 4, 783–799. MR 1223274, DOI 10.1137/0914050
- Y. Ihara, The Euler-Kronecker invariants in various families of global fields, in V. Ginzburg, ed., Algebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld’s 50th Birthday, Progress in Mathematics 850, Birkhäuser Boston, Cambridge, MA, 2006, 407–451.
- Yasutaka Ihara, On “$M$-functions” closely related to the distribution of $L’/L$-values, Publ. Res. Inst. Math. Sci. 44 (2008), no. 3, 893–954. MR 2451613
- Yasutaka Ihara, V. Kumar Murty, and Mahoro Shimura, On the logarithmic derivatives of Dirichlet $L$-functions at $s=1$, Acta Arith. 137 (2009), no. 3, 253–276. MR 2496464, DOI 10.4064/aa137-3-6
- Fredrik Johansson and Iaroslav V. Blagouchine, Computing Stieltjes constants using complex integration, Math. Comp. 88 (2019), no. 318, 1829–1850. MR 3925487, DOI 10.1090/mcom/3401
- W. Kahan, Further remarks on reducing truncation errors, Communications of the ACM 8 (1965), 40.
- Jeffrey C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 4, 527–628. MR 3090422, DOI 10.1090/S0273-0979-2013-01423-X
- Youness Lamzouri, The distribution of Euler-Kronecker constants of quadratic fields, J. Math. Anal. Appl. 432 (2015), no. 2, 632–653. MR 3378382, DOI 10.1016/j.jmaa.2015.06.065
- Y. Lamzouri and A. Languasco, Small values of $L^\prime /L(1,\chi )$, (2020), arXiv:2005.10714, to appear in Experimental Mathematics, https://doi.org/10.1080/10586458.2021.1927255
- Alessandro Languasco, Efficient computation of the Euler-Kronecker constants of prime cyclotomic fields, Res. Number Theory 7 (2021), no. 1, Paper No. 2, 22. MR 4194178, DOI 10.1007/s40993-020-00213-1
- Alessandro Languasco, Numerical verification of Littlewood’s bounds for $|L(1,\chi )|$, J. Number Theory 223 (2021), 12–34. MR 4213696, DOI 10.1016/j.jnt.2020.12.017
- Pieter Moree, Irregular behaviour of class numbers and Euler-Kronecker constants of cyclotomic fields: the log log log devil at play, Irregularities in the distribution of prime numbers, Springer, Cham, 2018, pp. 143–163. MR 3837472
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- The PARI Group, PARI/GP version 2.13.1, Bordeaux, 2021. Available from http://pari.math.u-bordeaux.fr/.
- James C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform, SIAM J. Sci. Comput. 17 (1996), no. 5, 1150–1166. MR 1404866, DOI 10.1137/S1064827593247023
Bibliographic Information
- Alessandro Languasco
- Affiliation: Università di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 354780
- ORCID: 0000-0003-2723-554X
- Email: alessandro.languasco@unipd.it
- Luca Righi
- Affiliation: Università di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy
- ORCID: 0000-0002-4522-7511
- Email: righi@math.unipd.it
- Received by editor(s): May 24, 2020
- Received by editor(s) in revised form: February 20, 2021
- Published electronically: August 12, 2021
- Additional Notes: The calculations here described in Section \ref{sect-implementation} were performed using the University of Padova Strategic Research Infrastructure Grant 2017: “CAPRI: Calcolo ad Alte Prestazioni per la Ricerca e l’Innovazione”, http://capri.dei.unipd.it.
The first author is the corresponding author - © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2899-2921
- MSC (2020): Primary 33-04, 11-04; Secondary 33E20, 11Y16, 11Y60
- DOI: https://doi.org/10.1090/mcom/3668
- MathSciNet review: 4305373